A yaw angle, different from zero, introduces highly nonlinear couplings in the rotational and translational quadrotor dynamics, implying undesirable motions. This argument has motivated that the position control problem of quadrotors is studied generally regulating yaw at zero. However, zeroing yaw limits the maneuverability of underactuated quadrotors because yaw is one of the four actuated motions. In this paper, the simultaneous tracking of position and time-varying heading is proposed, based on an integral sliding mode control with a quaternion-based sliding surface. An exponential tracking with chattering-free is obtained without requiring any knowledge of the dynamic model or its parameters for implementation. Since a linear invariant orientation error manifold is enforced for all time, a time-varying gain is introduced for a well-posed finite time convergence, which is useful not only to realize the virtual position control scheme, due to underactuation, but also to guarantee a desired contact in a given point at a given desired contact time for the yaw motion. Illustrative applications are explored in a simulation study which shows the viability and versatility of position–yaw tracking in the surveillance of a field-of-view (FoV) target, aerial screw driver, and aerial grasping.

References

References
1.
Lee
,
D.-B.
,
Burg
,
T.-C.
,
Xian
,
B.
, and
Dawson
,
D.-M.
,
2007
, “
Output Feedback Tracking Control of an Underactuated Quad-Rotor UAV
,”
IEEE American Control Conference
, pp.
1775
1780
.
2.
Lee
,
D.-B.
,
Nataraj
,
C.
,
Burg
,
T. C.
, and
Dawson
,
D. M.
,
2011
, “
Adaptive Tracking Control of an Underactuated Aerial Vehicle
,”
IEEE American Control Conference
, pp.
2326
2331
.
3.
Luque-Vega
,
L.
,
Castillo-Toledo
,
B.
, and
Loukianov
,
A. G.
,
2012
, “
Robust Block Second Order Sliding Mode Control for a Quadrotor
,”
J. Franklin Inst.
,
349
(
2
), pp.
719
739
.10.1016/j.jfranklin.2011.10.017
4.
Lee
,
T.
,
Leoky
,
M.
, and
McClamroch
,
N.-H.
,
2007
, “
Geometric Tracking Control of a Quadrotor UAV on SE(3)
,”
IEEE Conference on Decision and Control
, pp.
5420
5425
.
5.
Bertrand
,
S.
,
Hamel
,
T.
, and
Piet-Lahanie
,
H.
,
2011
, “
A Hierarchical Controller for Miniature VTOL UAVs: Design and Stability Analysis Using Singular Perturbation Theory
,”
Control Eng. Practice
,
19
(
10
), pp.
1099
1108
.10.1016/j.conengprac.2011.05.008
6.
Lee
,
T.
,
Leok
,
M.
, and
McClamroch
,
N.
,
2012
, “
Nonlinear Robust Tracking Control of a Quadrotor UAV on SE(3)
,”
IEEE American Control Conference
, pp.
4649
4654
.
7.
De Monte
,
P.
, and
Lohmann
,
B.
,
2013
, “
Trajectory Tracking Control for a Quadrotor Helicopter Based on Backstepping Using a Decoupling Quaternion Parametrization
,”
Mediterranean Conference on Control & Automation
, pp.
507
512
.
8.
Huang
,
M.
,
Xian
,
B.
,
Diao
,
C.
,
Yang
,
K.
, and
Yu
,
F.
,
2010
, “
Adaptive Tracking Control of Underactuated Quadrotor Unmanned Aerial Vehicles Via Backstepping
,”
IEEE American Control Conference
, pp.
2076
2081
.
9.
Cabecinhas
,
D.
,
Cunha
,
R.
, and
Silvestre
,
C.
,
2009
, “
Rotorcraft Path Following Control for Extended Flight Envelope Coverage
,”
IEEE Conference on Decision and Control
, pp.
3460
3465
.
10.
Abdessameud
,
A.
, and
Tayebi
,
A.
,
2010
, “
Global Trajectory Tracking Control of VTOL-UAVs Without Linear Velocity Measurements
,”
Automatica
,
46
(
6
), pp.
1053
1059
.10.1016/j.automatica.2010.03.010
11.
Roberts
,
A.
, and
Tayebi
,
A.
,
2011
, “
Adaptive Position Tracking of VTOL UAVs
,”
IEEE Trans. Rob.
,
27
(
1
), pp.
129
142
.10.1109/TRO.2010.2092870
12.
Parra-Vega
,
V.
,
Sanchez
,
A.
,
Izaguirre
,
C.
, and
Oliva
,
F.
,
2012
, “
Position Tracking With Time-Varying Desired Yaw of Quadrotors: Basics and Applications in SE(3)
,”
ASME 5th Annual Dynamic Systems and Control Conference
, pp.
185
194
.
13.
Etkin
,
B.
, and
Reid
,
L. D.
,
1959
,
Dynamics of Flight
,
Wiley
,
New York
.
14.
Goldstein
,
H.
,
1980
,
Classical Mechanics
,
Addison-Wesley
, Reading, MA.
15.
Erdong
,
J.
, and
Zhaowei
,
S.
,
2008
, “
Robust Controllers Design With Finite Time Convergence for Rigid Spacecraft Attitude Tracking Control
,”
Aerospace Sci. Technol.
,
12
(
4
), pp.
324
330
.10.1016/j.ast.2007.08.001
16.
Parra-Vega
,
V.
,
Arimoto
,
S.
,
Yun-Hui
,
L.
,
Hirzinger
,
G.
, and
Akella
,
P.
,
2003
, “
Dynamic Sliding PID Control for Tracking of Robot Manipulators: Theory and Experiments
,”
IEEE Trans. Rob. Autom.
,
19
(
6
), pp.
967
976
.10.1109/TRA.2003.819600
17.
Parra-Vega
,
V.
,
2001
, “
Second Order Sliding Mode Control for Robot Arms With Time Base Generators for Finite-Time Tracking
,”
Dynam. Control
,
11
(
2
), pp.
175
186
.10.1023/A:1012535929651
18.
Bourquardez
,
O.
,
Mahony
,
R.
,
Guenard
,
N.
,
Chaumette
,
F.
,
Hamel
,
T.
, and
Eck
,
L.
,
2009
, “
Image-Based Visual Servo Control of the Translation Kinematics of a Quadrotor Aerial Vehicle
,”
IEEE Trans. Rob.
,
25
(
3
), pp.
743
749
.10.1109/TRO.2008.2011419
19.
Courbon
,
J.
,
Mezouar
,
Y.
,
Guenard
,
N.
, and
Martinet
,
P.
,
2009
, “
Visual Navigation of a Quadrotor Aerial Vehicle
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
, pp.
5315
5320
.
20.
Teuliere
,
C.
,
Eck
,
L.
,
Marchand
,
E.
, and
Guenard
,
N.
,
2010
, “
3D Model-Based Tracking for UAV Position Control
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
, pp.
1084
1089
.
21.
Ozawa
,
R.
, and
Chaumette
,
F.
,
2011
, “
Dynamic Visual Servoing With Image Moments for a Quadrotor Using a Virtual Spring Approach
,”
IEEE International Conference on Robotics and Automation
, pp.
5670
5676
.
22.
Hamel
,
T.
, and
Mahony
,
R.
,
2002
, “
Visual Servoing of an Under-Actuated Dynamic Rigid-Body System: An Image-Based Approach
,”
IEEE Trans. Rob. Autom.
,
18
(
2
), pp.
187
198
.10.1109/TRA.2002.999647
23.
Hua
,
M.-D.
,
Morin
,
P.
, and
Samson
,
C.
,
2007
, “
Balanced-Force-Control of Underactuated Thrust-Propelled Vehicles
,”
IEEE Conference on Decision and Control
, pp.
6435
6340
.
24.
Michael
,
N.
,
Fink
,
J.
, and
Kumar
,
V.
,
2011
, “
Cooperative Manipulation and Transportation With Aerial Robots
,”
Auton. Rob.
,
30
(
1
), pp.
73
86
.10.1007/s10514-010-9205-0
25.
Mellinger
,
D.
,
Shomin
,
M.
,
Michael
,
N.
, and
Kumar
,
V.
,
2010
, “
Cooperative Grasping and Transport Using Multiple Quadrotors
,”
International Symposium on Distributed Autonomous Robotic Systems
, pp.
545
558
.
26.
Akella
,
P.
,
Parra-Vega
,
V.
,
Arimoto
,
S.
, and
Tanie
,
K.
,
1994
, “
Discontinuous Model-Based Adaptive Control for Robots Executing Free and Constrained Tasks
,”
IEEE International Conference on Robotics and Automation
, pp.
3000
3007
.
27.
Park
,
J.
,
2011
, “
The Relationship Between Controlled Joint Torque and End-Effector Force in Underactuated Robotic Systems
,”
Robotica
,
29
(
4
), pp.
581
584
.10.1017/S0263574710000391
28.
Winbock
,
T.
,
Ott
,
C.
, and
Hirzinger
,
G.
,
2007
, “
Impedance Behaviors for Two-Handed Manipulation: Design and Experiments
,”
International Conference on Robotics and Automation
, pp.
4182
4189
.
You do not currently have access to this content.