The problem of stabilizing steady gliding is critical for an underwater glider, which is subject to many non-negligible disturbances from the aquatic environment. In this paper, we propose a new systematic controller design and implementation approach for the stabilization problem, including a nonlinear, passivity-based controller and a nonlinear model-based observer, where the actuation is realized through a whale tail-like control surface. The controller is designed based on an approximation of a reduced model that is obtained through singular perturbation analysis, and consequently, it does not require full state feedback. The local stability of the full closed-loop system is established through linearization analysis. The nonlinear observer is designed to estimate the velocity-related system states, which are difficult to measure for such low-speed underwater vehicles. Simulation results are first provided to demonstrate that the proposed controller achieves rapid convergence in stabilization and the proposed observer has good performance especially in robustness against measurement noise. Experimental results using a gliding robotic fish are presented to support the effectiveness of both the controller and the observer.

References

References
1.
Rudnick
,
D. L.
,
Davis
,
R. E.
,
Eriksen
,
C. C.
,
Fratantoni
,
D. M.
, and
Perry
,
M. J.
,
2004
, “
Underwater Gliders for Ocean Research
,”
Mar. Technol. Soc. J.
,
38
(
2
), pp.
73
84
.10.4031/002533204787522703
2.
Eriksen
,
C. C.
,
Osse
,
T. J.
,
Light
,
R.
,
Wen
,
R. D.
,
Lehmann
,
T. W.
,
Sabin
,
P. L.
,
Ballard
,
J. W.
, and
Chiodi
,
A. M.
,
2001
, “
Seaglider: A Long-Range Autonomous Underwater Vehicle for Oceanographic Research
,”
IEEE J. Oceanic Eng.
,
26
(
4
), pp.
424
436
.10.1109/48.972073
3.
Sherman
,
J.
,
Davis
,
R. E.
,
Owens
,
W. B.
, and
Valdes
,
J.
,
2001
, “
The Autonomous Underwater Glider'Spray
,”
IEEE J. Oceanic Eng.
,
26
(
4
), pp.
437
446
.10.1109/48.972076
4.
Webb
,
D. C.
,
Simonetti
,
P. J.
, and
Jones
,
C. P.
,
2001
, “
Slocum: An Underwater Glider Propelled by Environmental Energy
,”
IEEE J. Oceanic Eng.
,
26
(
4
), pp.
447
452
.10.1109/48.972077
5.
Graver
,
J. G.
,
2005
, “
Underwater Gliders: Dynamics, Control, and Design
,” Ph.D. thesis, Princeton University, Princeton, NJ.
6.
Davis
,
R. E.
,
Leonard
,
N. E.
, and
Fratantoni
,
D. M.
,
2009
, “
Routing Strategies for Underwater Gliders
,”
Deep Sea Res. Part II
,
56
(
3–5
), pp.
173
187
.10.1016/j.dsr2.2008.08.005
7.
Blidberg
,
D.
,
2001
, “
The Development of Autonomous Underwater Vehicles (AUV); A Brief Summary
,”
IEEE International Conference on Robotics and Automation (ICRA)
, Seoul, South Korea, May 21–26.
8.
Smith
,
R.
, and
Chao
,
Y.
,
2010
, “
Planning and Implementing Trajectories for Autonomous Underwater Vehicles to Track Evolving Ocean Processes Based on Predictions From a Regional Ocean Model
,”
Int. J. Rob. Res.
,
29
(
12
), pp.
1475
1497
.10.1177/0278364910377243
9.
Mahmoudian
,
N.
,
2009
, “
Efficient Motion Planning and Control for Underwater Gliders
,” Ph.D. thesis, Virginia Polytechnic Institute and State University, Blacksburg, VA.
10.
Leonard
,
N. E.
, and
Graver
,
J. G.
,
2001
, “
Model-Based Feedback Control of Autonomous Underwater Gliders
,”
IEEE J. Oceanic Eng.
,
26
(
4
), pp.
633
645
.10.1109/48.972106
11.
Mahmoudian
,
N.
, and
Woolsey
,
C. A.
,
2008
, “
Underwater Glider Motion Control
,” Proceedings of
IEEE
Conference on Decision and Control,
Cancun
, Mexico, Dec. 9–11, pp.
552
557
.10.1109/CDC.2008.4739432
12.
Bhatta
,
P.
,
2006
, “
Nonlinear Stability and Control of Gliding Vehicles
,” Ph.D. thesis, Princeton University, Princeton, NJ.
13.
Bhatta
,
P.
, and
Leonard
,
N.
,
2008
, “
Nonlinear Gliding Stability and Control for Vehicles With Hydrodynamic Forcing
,”
Automatica
,
44
(
5
), pp.
1240
1250
.10.1016/j.automatica.2007.10.006
14.
Heidemann
,
J.
,
Ye
,
W.
,
Wills
,
J.
,
Syed
,
A.
, and
Li
,
Y.
,
2006
, “
Research Challenges and Applications for Underwater Sensor Networking
,”
IEEE
Wireless Communications and Networking Conference
,
Las Vegas, NV
, Apr. 3–6, Vol.
1
, pp.
228
235
.10.1109/WCNC.2006.1683469
15.
Kinsey
,
J. C.
,
Eustice
,
R. M.
, and
Whitcomb
,
L. L.
,
2006
, “
A Survey of Underwater Vehicle Navigation: Recent Advances and New Challenges
,”
IFAC Conference of Manoeuvering and Control of Marine Craft
, Lisbon, Portugal. Sept. 20–22.
16.
Zhang
,
F.
, and
Tan
,
X.
,
2013
, “
Gliding Robotic Fish and Its Tail-Enabled Yaw Motion Stabilization Using Sliding Mode Control
,”
ASME
Paper No. DSCC2013-4015.10.1115/DSCC2013-4015
17.
Zhang
,
F.
,
Tan
,
X.
, and
Khalil
,
H. K.
,
2012
, “
Passivity-Based Controller Design for Stabilization of Underwater Gliders
,”
Proceedings of the 2012 American Control Conference
,
Montreal, QC
, Canada, June 27–29, pp.
5408
5413
.
18.
Khalil
,
H. K.
,
1987
, “
Stability Analysis of Nonlinear Multiparameter Singularly Perturbed Systems
,”
IEEE
American Control Conference
,
Minneapolis, MN
, June 10–12, pp.
1219
1223
.10.1109/TAC.1987.1104564
19.
Khalil
,
H.
,
2002
,
Nonlinear Systems
,
Prentice Hall
,
Upper Saddle River, NJ
.
20.
Kokotović
,
P.
,
Khalil
,
H.
, and
O'Reilly
,
J.
,
1999
,
Singular Perturbation Methods in Control: Analysis and Design
,
Society for Industrial and Applied Mathematics
.10.1137/1.9781611971118
21.
Zhang
,
F.
, and
Tan
,
X.
,
2014
, “
Nonlinear Observer Design for Stabilization of Gliding Robotic Fish
,”
IEEE
American Control Conference (ACC)
,
Portland, OR
, June 4–6, pp.
4715
4720
.10.1109/ACC.2014.6859250
22.
Zhang
,
F.
,
Thon
,
J.
,
Thon
,
C.
, and
Tan
,
X.
,
2013
, “
Miniature Underwater Glider: Design and Experimental Results
,”
IEEE/ASME Trans. Mechatronics
,
19
(
1
), pp.
394
399
.10.1109/TMECH.2013.2279033
23.
Zhang
,
F.
,
Zhang
,
F.
, and
Tan
,
X.
,
2012
, “
Steady Spiraling Motion of Gliding Robotic Fish
,”
IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS)
,
Vilamoura
, Portugal, Oct. 7–12, pp.
1754
1759
.10.1109/IROS.2012.6385860
You do not currently have access to this content.