Turbocharger and negative valve overlap (NVO) strategy are widely used among advanced combustion modes for internal combustion engines. In order to achieve well emission performance, the NVO can be as large as 100 crank angle (CA) degrees, such that the residual gas fraction can be up to 40%. With such amount of residual gas in the cylinder, the trapped unburned fuel is not trivial. It has a significant impact on the combustion process. However, the trapped unburned fuel mass is hard to be measured directly. In this paper, a novel method based on the signals of oxygen fraction is proposed to estimate it. By analyzing the combustion process, dynamic equations for the intake/exhaust manifolds and in-cylinder oxygen fractions, as well as actual fuel mass in the cylinder are constructed. A smooth variable structure filter (SVSF) was designed to estimate oxygen fractions and further the trapped unburned fuel. As a comparison, Kalman filter (KF) and linear matrix inequality (LMI) based linear parameter-varying (LPV) filter were also applied. Robustness properties of the three observers are analyzed based on the theory of input-to-state (ISS) stability. The proposed models and methods and theoretical analysis are validated and compared through a set of simulations in high-fidelity GT-Power environment. The simulation results match well with theoretical analysis that the SVSF has good properties of strong robustness (with a root mean square error (RMSE) of 0.24, comparing with 0.4 of LPV filter and 0.49 of KF, for the unburned fuel estimation).

References

References
1.
Dec
,
E.
,
2009
, “
Advanced Compression-Ignition Engines—Understanding the In-Cylinder Processes
,”
Proc. Combust. Inst.
,
32
(
2
), pp.
27
42
.10.1016/j.proci.2008.08.008
2.
Rausen
,
D. J.
,
Stefanopoulou
,
A. G.
,
Kang
,
J. M.
,
Eng
,
J. A.
, and
Kuo
,
T. W.
,
2005
, “
A Mean-Value Model for Control of Homogeneous Charge Compression Ignition (HCCI) Engines
,”
ASME J. Dyn. Syst., Meas., Control.
,
127
(
3
), pp.
355
362
.10.1115/1.1985439
3.
Ravi
,
N.
,
Matthew
,
J. R.
,
Liao
,
H.
,
Adam
,
F. J.
,
Chang
,
C.
,
Park
,
S.
, and
Gerdes
,
J. C.
,
2010
, “
Model-Based Control of HCCI Engines Using Exhaust Recompression
,”
IEEE Trans. Control Syst. Technol.
,
18
(
6
), pp.
1289
1302
.10.1109/TCST.2009.2036599
4.
Swami
,
N. S.
,
Mallikarjuna
,
J. M.
, and
Ramesh
,
A.
,
2010
, “
Effects of Charge Temperature and Exhaust Gas Re-Circulation on Combustion and Emission Characteristics of an Acetylene Fuelled HCCI Engine
,”
Fuel
,
89
(
2
), pp.
15
21
.10.1016/j.fuel.2009.08.032
5.
Stuart
,
D.
,
Robert
,
C. M.
,
Wagner
,
K.
,
Dean
,
E.
, and
Johney
,
B. G.
,
2007
, “
Understanding the Transition Between Conventional Spark-Ignited Combustion and HCCI in a Gasoline Engine
,”
Proc. Combust. Inst.
,
31
(
2
), pp.
2887
2894
.10.1016/j.proci.2006.07.133
6.
Stefnanopoulou
,
A. G.
,
Kolmanovsky
,
I.
, and
Freudenberg
,
J. S.
,
2000
, “
Control of Variable Geometry Turbocharged Diesel Engines for Reduced Emissions
,”
IEEE Trans. Control Syst. Technol.
,
8
(
4
), pp.
733
745
.10.1109/87.852917
7.
Sellnau
,
M.
,
James
,
S.
, and
Larry
,
O.
,
2009
, “
Development of a Practical Tool for Residual Gas Estimation in IC Engines,” Matthew Viele and Kris Quillen John Silvestri and Iakovos Papadimitriou
,”
SAE Technical Paper No. 2009-01-0695
. 10.4271/2009-01-0695
8.
Albert
,
B. P.
,
2004
, “
Residual Gas Effects on Combustion in an Air-Cooled Utility Engine
,” Master of Science (Mechanical Engineering) thesis, University of Wisconsin-Madison, Madison, WI.
9.
Giansetti
,
P.
,
Colin
,
G.
,
Higelin
,
P.
, and
Chamaillard
,
Y.
,
2007
, “
Residual Gas Fraction Measurement and Computation
,”
Int. J. Eng. Res.
,
8
(
4
), pp.
347
364
.10.1243/14680874JER00407
10.
Hellström
,
E.
,
Stefanopoulou
,
A.
,
Jiri
,
V.
,
Aristotelis
,
B.
,
Dennis
,
A.
,
Jiang
,
L.
, and
Yilmaz
,
H.
,
2012
, “
Understanding the Dynamic Evolution of Cyclic Variability at the Operating Limits of HCCI Engines With Negative Valve Overlap
,”
SAE Technical Paper No. 2012-01-1106
. 10.4271/2012-01-1106
11.
Karagiorgis
,
S.
,
Nick
,
C.
,
Keith
,
G.
,
Neil
,
C.
, and
Petridis
,
A.
,
2006
, “
Residual Gas Fraction Measurement and Estimation on a Homogeneous Charge Compression Ignition Engine Utilizing the Negative Valve Overlap Strategy
,”
SAE Technical Paper No. 2006-01-3276
. 10.4271/2006-01-3276
12.
Nakayama
,
S.
,
Takao
,
F.
,
Akio
,
M.
,
Teruhiko
,
M.
, and
Toru
,
W.
,
2003
, “
A New Dynamic Combustion Control Method Based on Charge Oxygen Concentration for Diesel Engines
,”
SAE Technical Paper No. 2003-01-3181
. 10.4271/2003-01-3181
13.
Kocher
,
L.
,
Karla
,
S.
,
Daniel
,
V. A.
, and
Gregory
,
M. S.
,
2012
, “
Robust Oxygen Fraction Estimation for Diesel Engines Utilizing Variable Intake Valve Actuation
,”
Engine and Powertrain Control, Simulation and Modeling Conference
, IFP Energies nouvelles, France, Oct. 23–25, Vol.
3
, pp.
310
317
.10.3182/20121023-3-FR-4025.00025
14.
Wang
,
J.
,
2008
, “
Air Fraction Estimation for Multiple Combustion Mode Diesel Engines With Dual-Loop EGR Systems
,”
Control Eng. Pract.
,
16
(
12
), pp.
1479
1486
.10.1016/j.conengprac.2008.04.007
15.
Leroy
,
T.
,
Alix
,
G.
,
Chauvin
,
J.
,
Duparchy
,
A.
, and
Le Berr
,
F.
,
2008
, “
Modeling Fresh Air Charge and Residual Gas Fraction on a Dual Independent Variable Valve Timing SI Engine
,”
SAE Technical Paper No. 2008-01-0983
. 10.4271/2008-01-0983
16.
Kolmanovsky
,
I.
,
Morall
,
P.
, and
Van
,
N. M.
,
1999
, “
Issues in Modeling and Control of Intake Flow in Variable Geometry Turbocharged Engines” (Research Notes in Mathematics)
,
Chapman and Hall CRC Press
, Boca Raton, FL, pp.
436
445
.
17.
Wang
,
J.
,
2008
, “
Hybrid Robust Air-Path Control for Diesel Engines Operating Conventional and Low Temperature Combustion Modes
,”
ASME IEEE Trans. Control Syst. Technol.
,
16
(
6
), pp.
1138
1151
.10.1109/TCST.2008.917227
18.
Grondin
,
O.
,
Philippe
,
M.
, and
Jonathan
,
C.
,
2009
, “
Control of a Turbocharged Diesel Engine Fitted with High Pressure and Low Pressure Exhaust Gas Recirculation Systems
,”
IEEE
Conference on Decision and Control and European Control Conference
, Shanghai, China, Dec. 15–18, pp.
6582
6589
. 10.1109/CDC.2009.5400922
19.
Habibi
,
S. R.
,
2007
, “
The Smooth Variable Structure Filter
,”
Proc. IEEE
,
95
(
5
), pp.
1026
1059
.10.1109/JPROC.2007.893255
20.
Habibi
,
S. R.
, and
Burton
,
R.
,
2003
, “
The Variable Structure Filter
,”
ASME J. Dyn. Syst., Meas., Control.
,
125
(
3
), pp.
287
293
.10.1115/1.1590682
21.
Welch
,
G.
,
Gary
,
B.
, and
Chapel
,
H.
,
2001
, “
An Introduction to the Kalman Filter
,” Proc of SIGGRAPH, Course, Los Angeles, CA, Aug., No. 8(27599–23175) 41.
22.
Barbarisi
,
O.
,
Alessandro
,
G.
, and
Luigi
,
G.
,
2002
, “
An Extended Kalman Observer for the In-Cylinder Air Mass Flow Estimation
,”
Proceedings of MECA02 International Workshop on Diagnostics in Automotive Engines and Vehicles
, Oct., Fisciano SA, pp. 1–14.
23.
Daafouz
,
J.
, and
Jacques
,
B.
,
2001
, “
Parameter Dependent Lyapunov Functions for Discrete Time Systems With Time Varying Parametric Uncertainties
,”
Syst. Control Lett.
,
43
(
5
), pp.
355
359
.10.1016/S0167-6911(01)00118-9
24.
Jiang
,
Z. P.
, and
Yuan
,
W.
,
2001
, “
Input-to-State Stability for Discrete-Time Nonlinear Systems
,”
Automatica
,
6
(
37
), pp.
857
869
.10.1016/S0005-1098(01)00028-0
25.
Sontag
,
E. D.
,
1995
, “
On the Input-to-State Stability Property
,”
Eur. J. Control
,
1
(
1
), pp.
24
36
.10.1016/S0947-3580(95)70005-X
26.
Cao
,
L.
, and
Howard
,
M. S.
,
2003
, “
Exponential Convergence of the Kalman Filter Based Parameter Estimation Algorithm
,”
Int. J. Adap. Signal Process.
,
17
(
10
), pp.
763
783
.10.1002/acs.774
27.
Yan
,
F.
, and
Wang
,
J.
,
2012
, “
Design and Robustness Analysis of Discrete Observers for Diesel Engine In-Cylinder Oxygen Mass Fraction Cycle-by-Cycle Estimation
,”
IEEE Trans. Control Syst. Technol.
,
20
(
1
), pp.
72
83
.10.1109/TCST.2010.2104151
28.
Habibi
,
S. R.
,
2008
, “
Combined Variable Structure and Kalman Filtering Approach
,”
2008 American Control Conference
, Seattle, WA, June 11–13, pp.
1855
1862
.10.1109/ACC.2008.4586762
You do not currently have access to this content.