We are developing a series of systems science-based clinical tools that will assist in modeling, diagnosing, and quantifying postural control deficits in human subjects. In line with this goal, we have designed and constructed a seated balance device and associated experimental task for identification of the human seated postural control system. In this work, we present a quadratic programming (QP) technique for optimizing a time-domain experimental input signal for this device. The goal of this optimization is to maximize the information present in the experiment, and therefore its ability to produce accurate estimates of several desired seated postural control parameters. To achieve this, we formulate the problem as a nonconvex QP and attempt to locally maximize a measure (T-optimality condition) of the experiment’s Fisher information matrix (FIM) under several constraints. These constraints include limits on the input amplitude, physiological output magnitude, subject control amplitude, and input signal autocorrelation. Because the autocorrelation constraint takes the form of a quadratic constraint (QC), we replace it with a conservative linear relaxation about a nominal point, which is iteratively updated during the course of optimization. We show that this iterative descent algorithm generates a convergent suboptimal solution that guarantees monotonic nonincreasing of the cost function value while satisfying all constraints during iterations. Finally, we present successful experimental results using an optimized input sequence.

References

References
1.
Reeves
,
N. P.
,
Cholewicki
,
J.
, and
Narendra
,
K. S.
,
2009
, “
Effects of Reflex Delays on Postural Control During Unstable Seated Balance
,”
J. Biomech.
,
42
(
2
), pp.
164
170
.10.1016/j.jbiomech.2008.10.016
2.
Xu
,
Y.
,
Choi
,
J.
,
Reeves
,
N.
, and
Cholewicki
,
J.
,
2010
, “
Optimal Control of the Spine System
,”
ASME J. Biomech. Eng.
,
132
, p.
051004
.10.1115/1.4000955
3.
Mehra
,
R.
,
1974
, “
Optimal Input Signals for Parameter Estimation in Dynamic Systems—Survey and New Results
,”
IEEE Trans. Autom. Control
,
19
(
6
), pp.
753
768
.10.1109/TAC.1974.1100701
4.
Yuan
,
Z.-D.
, and
Ljung
,
L.
,
1985
, “
Unprejudiced Optimal Open Loop Input Design for Identification of Transfer Functions
,”
Automatica
,
21
(
6
), pp.
697
708
.10.1016/0005-1098(85)90043-3
5.
Gevers
,
M.
, and
Ljung
,
L.
,
1986
, “
Optimal Experiment Designs With Respect to the Intended Model Application
,”
Automatica
,
22
(
5
), pp.
543
554
.10.1016/0005-1098(86)90064-6
6.
Forssell
,
U.
, and
Ljung
,
L.
,
2000
, “
Some Results on Optimal Experiment Design
,”
Automatica
,
36
(
5
), pp.
749
756
.10.1016/S0005-1098(99)00205-8
7.
Jansson
,
H.
, and
Hjalmarsson
,
H.
,
2005
, “
Input Design Via LMIS Admitting Frequency-Wise Model Specifications in Confidence Regions
,”
IEEE Trans. Autom. Control
,
50
(
10
), pp.
1534
1549
.10.1109/TAC.2005.856652
8.
Forbes
,
P. A.
,
de Bruijn
,
E.
,
Schouten
,
A. C.
,
van der Helm
,
F. C.
, and
Happee
,
R.
,
2013
, “
Dependency of Human Neck Reflex Responses on the Bandwidth of Pseudorandom Anterior–Posterior Torso Perturbations
,”
Exp. Brain Res.
,
226
(
1
), pp.
1
14
.10.1007/s00221-012-3388-x
9.
Luo
,
Z.-q.
,
Ma
,
W.-k.
,
So
,
A.-C.
,
Ye
,
Y.
, and
Zhang
,
S.
,
2010
, “
Semidefinite Relaxation of Quadratic Optimization Problems
,”
IEEE Signal Process. Mag.
,
27
(
3
), pp.
20
34
.10.1109/MSP.2010.936019
10.
d'Aspremont
,
A.
, and
Boyd
,
S.
,
2003
, “
Relaxations and Randomized Methods for Nonconvex QCQPs
,” Stanford University, Stanford, CA, EE392o Class Notes.
11.
Pukelsheim
,
F.
,
1993
,
Optimal Design of Experiments
, Wiley, New York. 10.1137/1.9780898719109
12.
Priess
,
M.
,
Choi
,
J.
,
Radcliffe
,
C.
,
Popovich
,
J. M.
, Jr.
,
Cholewicki
,
J.
, and
Reeves
,
N.
,
2014
, “
Time-Domain Optimal Experimental Design in Human Postural Control Testing
,” Proceedings of the 2014
IEEE
American Control Conference
,
Portland, OR
, June 4–6, pp.
4790
4795
.10.1109/ACC.2014.6858856
13.
Priess
,
M. C.
,
Choi
,
J.
,
Radcliffe
,
C.
,
Popovich
,
J. M.
,
Cholewicki
,
J.
, and
Reeves
,
N. P.
,
2014
, “
Time-Domain Optimal Experimental Design in Human Seated Postural Control Testing
,” http://www.egr.msu.edu/∼jchoi/files/papers/index.html
14.
Lee
,
H.
,
Granata
,
K. P.
, and
Madigan
,
M. L.
,
2008
, “
Effects of Trunk Exertion Force and Direction on Postural Control of the Trunk During Unstable Sitting
,”
Clin. Biomech.
,
23
(
5
), pp.
505
509
.10.1016/j.clinbiomech.2008.01.003
15.
Slota
,
G. P.
,
Granata
,
K. P.
, and
Madigan
,
M. L.
,
2008
, “
Effects of Seated Whole-Body Vibration on Postural Control of the Trunk During Unstable Seated Balance
,”
Clin. Biomech.
,
23
(
4
), pp.
381
386
.10.1016/j.clinbiomech.2007.11.006
16.
Ljung
,
L.
,
1999
,
System Identification: Theory for the User
,
PTR Prentice Hall
,
Upper Saddle River, NJ
.
17.
Prochazka
,
A.
,
Gillard
,
D.
, and
Bennett
,
D. J.
,
1997
, “
Implications of Positive Feedback in the Control of Movement
,”
J. Neurophysiol.
,
77
(
6
), pp.
3237
3251
.
18.
Mugge
,
W.
,
Abbink
,
D.
, and
Van der Helm
,
F.
,
2007
, “
Reduced Power Method: How to Evoke Low-Bandwidth Behaviour While Estimating Full-Bandwidth Dynamics
,”
IEEE
10th International Conference on Rehabilitation Robotics,
Noordwijk
,
The Netherlands
, June 13–15, pp.
575
581
.10.1109/ICORR.2007.4428483
19.
Zatsiorsky
,
V. M.
,
2002
,
Kinetics of Human Motion
,
Human Kinetics
,
Champaign, IL
.
20.
Hjalmarsson
,
H.
,
2005
, “
From Experiment Design to Closed-Loop Control
,”
Automatica
,
41
(
3
), pp.
393
438
.10.1016/j.automatica.2004.11.021
21.
Aguero
,
J.
, and
Goodwin
,
G. C.
,
2006
, “
On the Optimality of Open and Closed Loop Experiments in System Identification
,” 45th
IEEE
Conference on Decision and Control
,
San Diego, CA
, Dec. 13–15, pp.
163
168
.10.1109/CDC.2006.377402
22.
Goodwin
,
G. C.
, and
Payne
,
R. L.
,
1977
,
Dynamic System Identification: Experiment Design and Data Analysis
,
Academic
,
New York
.
23.
Rojas
,
C. R.
,
Welsh
,
J. S.
,
Goodwin
,
G. C.
, and
Feuer
,
A.
,
2007
, “
Robust Optimal Experiment Design for System Identification
,”
Automatica
,
43
(
6
), pp.
993
1008
.10.1016/j.automatica.2006.12.013
24.
Aoki
,
M.
, and
Staley
,
R.
,
1970
, “
On Input Signal Synthesis in Parameter Identification
,”
Automatica
,
6
(
3
), pp.
431
440
.10.1016/0005-1098(70)90058-0
25.
Schrama
,
R. J.
,
1992
, “
Accurate Identification for Control: The Necessity of an Iterative Scheme
,”
IEEE Trans. Autom. Control
,
37
(
7
), pp.
991
994
.10.1109/9.148355
You do not currently have access to this content.