The optimal control of a Formula One car on a three-dimensional (3D) track is studied. The track is described by its geodesic and normal curvatures, and its relative torsion. These curvature parameters are obtained from noisy measurement data using the optimal estimation technique described in Part 1. The optimal control calculations presented are based on the aforementioned track model and a vehicle model that is responsive to the geometric features of a 3D track. For vehicle modeling purposes, the track is treated as a plane tangent to a nearby point on the track's spine. This tangent plane moves under the car and is orthogonal to the principal normal vector m at the nearby spine point. Results are presented that compare two-dimensional (2D) and 3D minimum-lap-time results, with the two compared. The Barcelona Formula One track studied in Part 1 is used again as an illustrative example.

References

References
1.
Sharp
,
R. S.
, and
Peng
,
H.
,
2011
, “
Vehicle Dynamics Applications of Optimal Control Theory
,”
Veh. Syst. Dyn.
,
49
(
7
), pp.
1073
1111
.10.1080/00423114.2011.586707
2.
Perantoni
,
G.
, and
Limebeer
,
D. J. N.
,
2014
, “
Optimal Control for a Formula One Car With Variable Parameters
,”
Veh. Syst. Dyn.
,
52
(
5
), pp.
653
678
.10.1080/00423114.2014.889315
3.
Limebeer
,
D. J. N.
,
Perantoni
,
G.
, and
Rao
,
A. V.
,
2014
, “
Optimal Control of Formula One Car Energy Recovery Systems
,”
Int. J. Control
,
87
(
10
), pp.
2065
2080
.10.1080/00207179.2014.900705
4.
Lanczos
,
C.
,
1986
,
The Variational Principles of Mechanics
,
4th ed.
,
Dover Publications
, New York.
5.
Bertsekas
,
D. P.
,
1999
,
Nonlinear Programming
,
2nd ed.
,
Athena Scientific
,
Belmont, MA
.
6.
Bliss
,
G. A.
,
1918
, “
The Problem of Mayer With Variable End Points
,”
Trans. Am. Math. Soc.
,
19
, pp.
305
314
.10.1090/S0002-9947-1918-1501104-7
7.
Bryson
,
A. E. J.
, and
Ho
,
Y. C.
,
1975
,
Applied Optimal Control: Optimization, Estimation, and Control
, CRC Press, Taylor & Francis Group, London, UK.
8.
Kirk
,
D. E.
,
2004
,
Optimal Control Theory: An Introduction
,
Dover Publication
,
New York
.
9.
Sage
,
A. P.
, and
White
,
I. C.
,
1977
,
Optimum Systems Control
,
Prentice-Hall, Inc.
,
Englewood Cliffs, NJ
.
10.
Patterson
,
M. A.
, and
Rao
,
A. V.
,
2013
,
GPOPS-II Version 1.0: A General-Purpose MATLAB Toolbox for Solving Optimal Control Problems Using the Radau Pseudospectral Method
,
University of Florida
,
Gainesville, FL
.
11.
Davis
,
P. J.
, and
Rabinowitz
,
P.
,
1984
,
Methods of Numerical Integration
,
Academic Press
,
Orlando, FL
.
12.
Garg
,
D.
,
Patterson
,
M. A.
,
Hager
,
W. W.
,
Rao
,
A. V.
,
Benson
,
A. V.
, and
Huntington
,
G. T.
,
2010
, “
A Unified Framework for the Numerical Solution of Optimal Control Problems Using Pseudospectral Methods
,”
Automatica
,
46
(
11
), pp.
1843
1851
.10.1016/j.automatica.2010.06.048
13.
Kameswaran
,
S.
, and
Biegler
,
L. T.
,
2008
, “
Convergence Rates for the Direct Transcription of Optimal Control Problems Using Collocation and Radau Points
,”
Comput. Optim. Appl.
,
41
(
1
), pp.
81
126
.10.1007/s10589-007-9098-9
14.
Hou
,
H.
,
2013
, “
Convergence Analysis of Orthogonal Collocation Methods for Unconstrained Optimal Control
,” Ph.D. dissertation, University of Florida, Gainesville, FL.
15.
Ruths
,
J.
,
Zlotnik
,
A.
, and
Li
,
J. S.
,
2011
, “
Convergence of a Pseudospectral Method for Optimal Control of Complex Dynamical Systems
,” 50th
IEEE
Conference on Decision and Control and European Control Conference
,
Orlando, FL
, Dec. 12–15, pp.
5553
5558
.10.1109/CDC.2011.6160761
16.
Kelley
,
H. J.
,
1964
, “
A Second Variation Test for Singular Extremals
,”
AIAA J.
,
2
(
8
), pp.
1380
1382
.10.2514/3.2562
17.
Goh
,
B. S.
,
1966
, “
Necessary Conditions for Singular Extremals Involving Multiple Control Variables
,”
SIAM J. Control
,
4
(
4
), pp.
716
731
.10.1137/0304052
18.
Robbins
,
H. M.
,
1967
, “
A Generalized Legendre–Clebsch Condition for the Singular Cases of Optimal Control
,”
IBM J. Res. Dev.
,
11
(
4
), pp.
361
372
.10.1147/rd.114.0361
19.
Krenner
,
A. J.
,
1977
, “
The High Order Maximal Principle and Its Application to Singular Extremals
,”
SIAM J. Control
,
15
(
2
), pp.
256
293
.10.1137/0315019
20.
Squire
,
W.
, and
Trapp
,
G.
,
1998
, “
Using Complex Variables to Estimate Derivatives of Real Functions
,”
SIAM Rev.
,
40
(
1
), pp.
110
112
.10.1137/S003614459631241X
21.
Martins
,
J. R. R.
,
Sturdza
,
P.
, and
Alonso
,
J. J.
,
2003
, “
The Complex-Step Derivative Approximation
,”
ACM Trans. Math. Software
,
29
(
3
), pp.
245
262
.10.1145/838250.838251
22.
Lantoine
,
G.
,
Russell
,
R. P.
, and
Dargent
,
T.
,
2012
, “
Using Multicomplex Variables for Automatic Computation of High-Order Derivatives
,”
ACM Trans. Math. Software
,
38
(
3
), pp.
16:1
16:21
.10.1145/2168773.2168774
23.
Abramowitz
,
M.
, and
Stegun
,
I. A.
,
1965
,
Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables
,
Dover Publications
, New York.
24.
Darby
,
C. L.
,
Hager
,
W. W.
, and
Rao
,
A. V.
,
2011
, “
An hp-Adaptive Pseudospectral Method for Solving Optimal Control Problems
,”
Optim. Control Appl. Methods
,
32
(
4
), pp.
476
502
.10.1002/oca.957
25.
Pacejka
,
H. B.
,
2008
,
Tyre and Vehicle Dynamics
,
2nd ed.
,
Butterworth-Heinemann
, Oxford, UK.
26.
Kelly
,
D. P.
,
2008
, “
Lap Time Simulation With Transient Vehicle and Tyre Dynamics
,” Ph.D. thesis,
Cranfield University School of Engineering
,
Bedford, UK
.
You do not currently have access to this content.