Implicit sampling is a recently developed variationally enhanced sampling method that guides its samples to regions of high probability, so that each sample carries information. Implicit sampling may thus improve the performance of algorithms that rely on Monte Carlo (MC) methods. Here the applicability and usefulness of implicit sampling for improving the performance of MC methods in estimation and control is explored, and implicit sampling based algorithms for stochastic optimal control, stochastic localization, and simultaneous localization and mapping (SLAM) are presented. The algorithms are tested in numerical experiments where it is found that fewer samples are required if implicit sampling is used, and that the overall runtimes of the algorithms are reduced.

References

References
1.
Chorin
,
A.
, and
Hald
,
O.
,
2013
,
Stochastic Tools in Mathematics and Science
,
3rd ed.
,
Springer
,
New York
.
2.
Doucet
,
A.
,
de Freitas
,
N.
, and
Gordon
,
N.
, eds.,
2001
,
Sequential Monte Carlo Methods in Practice
,
Springer
,
New York
.
3.
Chorin
,
A.
, and
Tu
,
X.
,
2009
, “
Implicit Sampling for Particle Filters
,”
Proc. Natl. Acad. Sci.
,
106
(
41
), pp.
17249
17254
.
4.
Chorin
,
A.
,
Morzfeld
,
M.
, and
Tu
,
X.
,
2010
, “
Implicit Particle Filters for Data Assimilation
,”
Commun. Appl. Math. Comput. Sci.
,
5
(
2
), pp.
221
240
.
5.
Atkins
,
E.
,
Morzfeld
,
M.
, and
Chorin
,
A.
,
2013
, “
Implicit Particle Methods and Their Connection With Variational Data Assimilation
,”
Mon. Weather Rev.
,
141
(6), pp.
1786
1803
.
6.
Morzfeld
,
M.
, and
Chorin
,
A.
,
2012
, “
Implicit Particle Filtering for Models With Partial Noise, and an Application to Geomagnetic Data Assimilation
,”
Nonlinear Process. Geophys.
,
19
(
3
), pp.
365
382
.
7.
Morzfeld
,
M.
,
Tu
,
X.
,
Atkins
,
E.
, and
Chorin
,
A.
,
2012
, “
A Random Map Implementation of Implicit Filters
,”
J. Comput. Phys.
,
231
(
4
), pp.
2049
2066
.
8.
Stengel
,
R.
,
1993
,
Optimal Control and Estimation
,
Dover
,
New York
.
9.
Kappen
,
H.
,
2005
, “
Linear Theory for Control of Nonlinear Stochastic Systems
,”
Phys. Rev. Lett.
,
95
(
20
), p.
200201
.
10.
Kappen
,
H.
,
2005
, “
Path Integrals and Symmetry Breaking for Optimal Control Theory
,”
J. Stat. Mech.
,
11
, p.
011011
.
11.
Kappen
,
H.
,
2006
, “
An Introduction to Stochastic Control Theory, Path Integrals and Reinforcement Learning
,”
AIP Conference Proceedings
.
12.
Theodorou
,
E.
,
Buchli
,
J.
, and
Schaal
,
S.
,
2010
, “
A Generalized Path Integral Control Approach to Reinforcement Learning
,”
J. Mach. Learn. Res.
,
11
, pp.
3137
3181
.
13.
Yang
,
I.
,
Morzfeld
,
M.
,
Tomlin
,
C.
, and
Chorin
,
A.
,
2014
, “
Path Integral Formulation of Stochastic Optimal Control With Generalized Costs
,”
Proceedings of the 19th IFAC World Congress
, Cape Town, South Africa, Aug. 24–29.
14.
Dellaert
,
F.
,
Fox
,
D.
,
Burgard
,
W.
, and
Thrun
,
S.
,
1999
, “
Monte Carlo Localization for Mobile Robots
,”
IEEE International Conference on Robotics and Automation (ICRA’99)
,
Detroit, MI
, May 10–15, pp.
1322
1328
.
15.
Montemerlo
,
M.
, and
Thrun
,
S.
,
2007
,
FastSLAM. A Scalable Method for the Simultaneous Localization and Mapping Problem in Robotics
,
Springer
,
Berlin, Germany
.
16.
Thrun
,
S.
,
Burgard
,
W.
, and
Fox
,
D.
,
2005
,
Probabilistic Robotics
,
MIT Press
,
Cambridge, MA
.
17.
Nebot
,
E.
,
2003
, “
University Car Park (Inertial/GPS) Data Set
,” http://www-personal.acfr.usyd.edu.au/nebot/car_park.htm (Last Accessed Nov. 19, 2014)
18.
Weir
,
B.
,
Miller
,
R.
, and
Spitz
,
Y.
,
2013
, “
An Implicit Particle Smoother for High-Dimensional Systems
,”
Nonlinear Process. Geophys.
,
20
(
6
), pp.
1047
1060
.
19.
Fleming
,
W.
,
1977
, “
Exit Probabilities and Optimal Stochastic Control
,”
Appl. Math. Optim.
,
4
(
1
), pp.
329
346
.
20.
Hammond
,
B.
,
Lester
,
W. A.
, Jr.
, and
Reynolds
,
P.
,
1994
,
Monte Carlo Methods in Ab Initio Quantum Chemistry
,
World Scientific Publishing
,
Singapore
.
21.
Kloeden
,
P.
, and
Platen
,
E.
,
1999
,
Numerical Solution of Stochastic Differential Equations
,
3rd ed.
,
Springer
,
Berlin, Germany
.
22.
Nocedal
,
J.
, and
Wright
,
S.
,
2006
,
Numerical Optimization
,
2nd ed.
,
Springer
New York
.
23.
Fletcher
,
R.
,
1987
,
Practical Methods of Optimization
,
2nd ed.
,
Wiley
,
Hoboken, NJ
.
24.
Vanden-Eijnden
,
E.
, and
Weare
,
J.
,
2012
, “
Rare Event Simulation and Small Noise Diffusions
,”
Commun. Pure Appl. Math.
,
65
(
12
), pp.
1770
1803
.
25.
Vanden-Eijnden
,
E.
, and
Weare
,
J.
,
2013
, “
Data Assimilation in the Low Noise, Accurate Observation Regime With Application to the Kuroshio Current
,”
Mon. Weather Rev.
,
141
(
6
), pp.
1822
1841
.
26.
Slotine
,
J.-J.
, and
Li
,
W.
,
1991
,
Applied Nonlinear Control
,
Prentice Hall
,
Upper Saddle River, NJ
.
27.
Himmelblau
,
D.
,
1972
,
Applied Nonlinear Programming
,
McGraw-Hill
,
New York
.
28.
Kortenkamp
,
D.
,
Bonasso
,
R.
, and
Robin
,
R. M.
, eds.,
1998
,
AI-based Mobile Robots: Case Studies of Successful Robot Systems
,
MIT Press
,
Cambridge, MA
.
29.
Dissanayake
,
G.
,
Newman
,
P.
,
Clark
,
S.
, and
Durrant-Whyte
,
H.
,
2001
, “
A Solution to the Simultaneous Localization and Map Building (SLAM) Problem
,”
IEEE Trans. Rob. Autom.
,
17
(
3
), pp.
229
241
.
30.
Thorpe
,
C.
, and
Durrant-Whyte
,
H.
,
2001
,
Field Robots
,
ISRR
,
Springer, Berlin, Germany
.
31.
Golombek
,
M.
,
Cook
,
R.
,
Economou
,
T.
,
Folkner
,
W.
,
Haldemann
,
A.
,
Kallemeyn
,
P.
,
Knudsen
,
J.
,
Manning
,
R.
,
Moore
,
H.
,
Parker
,
T.
,
Rieder
,
R.
,
Schofield
,
J.
,
Smith
,
P.
, and
Vaughan
,
R.
,
1997
, “
Overview of the Mars Pathfinder Mission and Assessment of Landing Site Predictions
,”
Science
,
5344
(
278
), pp.
1743
1748
.
32.
Thrun
,
S.
,
Ferguson
,
D.
,
Haehnel
,
D.
,
Montemerlo
,
M.
,
Burgard
,
W.
, and
Triebel
,
R.
,
2003
, “
A System for Volumetric Robotic Mapping of Abandoned Mines
,”
Proceedings of the IEEE International Conference on Robotics and Automation (ICRA ’03)
, Taipeh, Taiwan, Sept. 14–19, pp.
4270
4275
.
33.
Kalman
,
R.
,
1960
, “
A New Approach to Linear Filtering and Prediction Theory
,”
ASME J. Basic Eng.
,
82
(
Series D
), pp.
35
48
.
34.
Biswas
,
J.
,
Coltin
,
B.
, and
Veloso
,
M.
,
2011
, “
Corrective Gradient Refinement for Mobile Robot Localization
,”
Proceedings of the International Conference on Intelligent Robots and Systems
, San Francisco, CA, pp.
73
78
.
35.
Biswas
,
J.
, and
Veloso
,
M.
,
2013
, “
Localization and Navigation of the Cobots Over Long-Term Deployments
,”
Int. J. Rob. Res.
,
32
(
4
), pp.
1679
1694
.
36.
Nebot
,
E.
,
2003
, “
Ute Documentation: Hardware Manual
,” http://www-personal.acfr.usyd.edu.au/nebot/experimental_data/modeling_info/Ute_modeling_info.htm (Last Accessed Nov. 19, 2014)
37.
Arulampalam
,
M.
,
Maskell
,
S.
,
Gordon
,
N.
, and
Clapp
,
T.
,
2002
, “
A Tutorial on Particle Filters for Online Nonlinear/Non-Gaussian Bayesian Tracking
,”
IEEE Trans. Signal Process.
,
50
(
2
), pp.
174
188
.
38.
Smith
,
R.
, and
Cheesman
,
P.
,
1987
, “
On the Representation of Spatial Uncertainty
,”
Int. J. Rob. Res.
,
5
(
4
), pp.
56
68
.
39.
Durrant-Whyte
,
H.
,
1988
, “
Uncertain Geometry in Robotics
,”
IEEE Trans. Rob. Autom.
,
4
(
1
), pp.
23
31
.
40.
Thrun
,
S.
,
Fox
,
D.
, and
Burgard
,
W.
,
1998
, “
A Probabilistic Approach to Concurrent Mapping and Localization for Mobile Robots
,”
Mach. Learn.
,
31
(
1
), pp.
29
53
.
41.
Murphy
,
K.
,
1999
, “
Bayesian Map Learning in Dynamic Environments
,”
Advances in Neural Information Processing Systems
,
MIT Press
,
Cambridge, MA
.
42.
Grisetti
,
G.
,
Kummerle
,
R.
,
Stachniss
,
C.
, and
Burgard
,
W.
,
2010
, “
A Tutorial on Graph-Based SLAM
,”
IEEE Intell. Transp. Syst. Mag.
,
2
(
4
), pp.
31
43
.
43.
Montemerlo
,
M.
,
Thrun
,
S.
,
Koller
,
D.
, and
Wegbreit
,
B.
,
2002
, “
Fast-SLAM: A Factored Solution to the Simultaneous Localization and Mapping Problem
,”
Proceedings of the AAAI National Conference on Artificial Intelligence
, Edmonton, Alberta, Canada, Jul. 28 – Aug. 1.
44.
Montemerlo
,
M.
,
Thrun
,
S.
,
Koller
,
D.
, and
Wegbreit
,
B.
,
2003
, “
FastSLAM 2.0: An Improved Particle Filtering Algorithm for Simultaneous Localization and Mapping That Provably Converges
,”
Proceedings of the Sixteenth International Joint Conference on Artificial Intelligence (IJCAI)
, Acapulco, Mexico, Aug. 9 – 15.
45.
Geweke
,
J.
,
1989
, “
Bayesian Inference in Econometric Models Using Monte Carlo Integration
,”
Econometrica
,
57
(
6
), pp.
1317
1399
.
46.
Guivant
,
J.
, and
Nebot
,
E.
,
2001
, “
Optimization of Simultaneous Localization and Map-Building Algorithm for Real Time Implementation
,”
IEEE Trans. Rob. Autom.
,
17
(
3
), pp.
241
257
.
You do not currently have access to this content.