Teleoperation systems have been developed in order to manipulate objects in environments where the presence of humans is impossible, dangerous or less effective. One of the most attractive applications is micro telemanipulation with micropositioning actuators. Due to the sensitivity of this operation, task performance should be accurately considered. The presence of force signals in the control scheme could effectively improve transparency. However, the main restriction is force measurement in micromanipulation scales. A new modified strategy for estimating the external forces acting on the master and slave robots is the major contribution of this paper. The main advantage of this strategy is that the necessity for force sensors is eliminated, leading to lower cost and further applicability. A novel control algorithm with estimated force signals is proposed for a general nonlinear macro–micro bilateral teleoperation system with time delay. The stability condition in the macro–micro teleoperation system with the new control algorithm is verified by means of Lyapunov stability analysis. The designed control algorithm guarantees stability of the macro–micro teleoperation system in the presence of an estimated operator and environmental force. Experimental results confirm the efficiency of the novel control algorithm in position tracking and force reflection.

References

1.
Nakajima
,
Y.
,
Nozaki
,
T.
, and
Ohnishi
,
K.
,
2014
, “
Heart Beat Synchronization With Haptic Feedback for Telesurgical Robot
,”
IEEE Trans. Ind. Electron.
,
61
(
7
), pp.
3753
3764
.10.1109/TIE.2013.2287258
2.
Kanehiro
,
F.
,
Yoshida
,
E.
, and
Yokoi
,
K.
,
2014
, “
Efficient Reaching Motion Planning Method for Low-Level Autonomy of Teleoperated Humanoid Robots
,”
Adv. Rob.
,
28
(
7
), pp.
433
439
.10.1080/01691864.2013.876931
3.
Lee
,
S.-J.
,
Lee
,
S.-C.
, and
Ahn
,
H.-S.
,
2014
, “
Design and Control of Tele-Matched Surgery Robot
,”
Mechatronics
,
24
(
5
), pp.
395
406
.10.1016/j.mechatronics.2014.02.008
4.
Wilde
,
M.
,
Chua
,
Z. K.
, and
Fleischner
,
A.
,
2014
, “
Effects of Multivantage Point Systems on the Teleoperation of Spacecraft Docking
,”
IEEE Trans. Hum. Mach. Systems.
,
44
(
2
), pp.
200
210
.10.1109/THMS.2013.2295298
5.
Cobos-Guzman
,
S.
,
Torres
,
J.
, and
Lozano
,
R.
,
2013
, “
Design of an Underwater Robot Manipulator for a Telerobotic System
,” Robotica.
,
31
(
6
), pp.
945
953
.10.1017/S0263574713000234
6.
Zareinejad
,
M.
,
Rezaei
,
S. M.
,
Abdullah
,
A.
, and
Shiry Ghidary
,
S.
,
2009
, “
Development of a Piezo-Actuated Micro-Teleoperation System for Cell Manipulation
,”
Int. J. Med. Rob. Comput. Assist Surg.
,
5
(
1
), pp.
66
76
.10.1002/rcs.236
7.
Son
,
H. I.
,
Bhattacharjee
,
T.
, and
Hashimoto
,
H.
,
2012
, “
Effect of Impedance-Shaping on Perception of Soft Tissues in Macro-Micro Teleoperation
,”
IEEE Trans. Ind. Electron.
,
59
(
8
), pp.
3273
3285
.10.1109/TIE.2011.2148672
8.
Khan
,
S.
,
Sabanovic
,
A.
, and
Nergiz
,
A. O.
,
2009
, “
Scaled Bilateral Teleoperation Using Discrete-Time Sliding-Mode Controller
,”
IEEE Trans. Ind. Electron.
,
56
(
9
), pp.
3609
3618
.10.1109/TIE.2009.2018538
9.
Seifabadi
,
R.
,
Rezaei
,
S. M.
,
Ghidary
,
S. S.
, and
Zareinejad
,
M.
,
2013
, “
A Teleoperation System for Micro Positioning With Haptic Feedback
,”
Int. J. Control, Autom. Syst.
,
11
(
4
), pp.
768
775
.10.1007/s12555-012-0139-5
10.
Bolopion
,
A.
, and
Régnier
,
S.
,
2013
, “
A Review of Haptic Feedback Teleoperation Systems for Micromanipulation and Microassembly
,”
IEEE Trans. Autom. Sci. Eng.
,
10
(
3
), pp.
496
502
.10.1109/TASE.2013.2245122
11.
Lee
,
D.
, and
Spong
,
M. W.
,
2006
, “
Passive Bilateral Teleoperation With Constant Time Delay
,”
IEEE Trans. Rob.
,
22
(
2
), pp.
269
281
.10.1109/TRO.2005.862037
12.
Nuno
,
E.
,
Ortega
,
R.
,
Barabanov
,
N.
, and
Basanez
,
L.
,
2008
, “
A Globally Stable PD Controller for Bilateral Teleoperators
,”
IEEE Trans. Rob.
,
24
(
3
), pp.
753
758
.10.1109/TRO.2008.921565
13.
Yoshida
,
K.
, and
Namerikawa
,
T.
,
2008
, “
Predictive PD Control for Teleoperation With Communication Time Delay
,” 17th World Congress, The International Federation of Automatic Control, Seoul, Korea, July 6–11, pp.
12703
12708
.
14.
Huang
,
K.
, and
Lee
,
D.
,
2011
, “
Hybrid PD-Based Control Framework for Passive Bilateral Teleoperation Over the Internet
,” 18th IFAC World Congress, Milan, Italy, Aug. 28–Sept. 2, pp.
1064
1069
.
15.
Ishii
,
T.
, and
Katsura
,
S.
,
2012
, “
Bilateral Control With Local Force Feedback for Delay-Free Teleoperation
,”
International Workshop on Advanced Motion Control
,
Sarajevo, Bosnia and Herzegovina
, March 25–27, pp.
1
6
.10.1109/AMC.2012.6197100
16.
Park
,
J. H.
, and
Cho
,
H. C.
,
2000
, “
Sliding Mode Control of Bilateral Teleoperation Systems With Force Reflection on the Internet
,”
IEEE
International Conference on Intelligent Robots and Systems
,
Takamatsu
, Oct. 31–Nov. 5, pp.
1187
1192
.10.1109/IROS.2000.893180
17.
Ueda
,
J.
, and
Yoshikawa
,
T.
,
2004
, “
Force-Reflecting Bilateral Teleoperation With Time Delay by Signal Filtering
,”
IEEE Trans. Rob. Autom.
,
20
(
3
), pp.
613
619
.10.1109/TRA.2004.825516
18.
Daly
,
J. M.
, and
Wang
,
D. W. L.
,
2010
, “
Time-Delayed Bilateral Teleoperation With Force Estimation for n-DOF Nonlinear Robot Manipulator
,”
IEEE
International Conference on Intelligent Control and Systems
,
Taipei
, Oct. 18–22, pp.
3911
3918
.10.1109/IROS.2010.5649183
19.
Daly
,
J. M.
, and
Wang
,
D. W. L.
,
2014
, “
Time-Delayed Output Feedback Bilateral Teleoperation With Force Estimation for n-DOF Nonlinear Manipulators
,”
IEEE Trans. Control Syst. Technol.
,
22
(
1
), pp.
299
306
.10.1109/TCST.2013.2242329
20.
Ahn
,
H. S.
,
2010
, “
Synchronization of Teleoperation Systems Using State and Force Observer
,”
International Conference on Control
,
Automation and Systems, Gyeonggi-do
,
Korea
, Oct. 27–30, pp.
1362
1365
.
21.
Del Sol
,
E.
,
King
,
R.
,
Scott
,
R.
, and
Ferre
,
M.
,
2014
, “
External Force Estimation for Teleoperation Based on Proprioceptive Sensors
,”
Int. J. Adv. Rob. Syst
.10.5772/58468
22.
Chen
,
W. H.
,
Ballance
,
D. J.
,
Gawthrop
,
P. J.
, and
O’Reilly
,
J.
,
2000
, “
A Nonlinear Disturbance Observer for Robotic Manipulator
,”
IEEE Trans. Ind. Electron.
,
47
(
1
), pp.
932
938
.10.1109/41.857974
23.
Mohammadi
,
A.
,
Tavakoli
,
M.
,
Marquez
,
H. J.
, and
Hashemzadeh
,
F.
,
2013
, “
Nonlinear Disturbance Observer Design for Robotic Manipulators
,”
Control Eng. Pract.
,
21
(
3
), pp.
253
267
.10.1016/j.conengprac.2012.10.008
24.
Mohammadi
,
A.
,
Marquez
,
H. J.
, and
Tavakoli
,
M.
,
2011
, “
Disturbance Observer-Based Trajectory Following Control of Robotic Manipulator
,”
23rd Can Cam
,
Vancouver, BC, Canada
, pp.
779
782
.
25.
Lichiardopol
,
S.
,
van de Wouw
,
N.
,
Kost
,
D.
, and
Nijmeijer
,
H.
,
2010
, “
Trajectory Tracking Control for a Tele-Operation Setup With Disturbance Estimation and Compensation
,”
IEEE
Conference on Decision and Control
,
Atlanta, GA
, Dec. 15–17, pp.
1142
1147
.10.1109/CDC.2010.5718090
26.
Mohammadi
,
A.
,
Tavakoli
,
M.
, and
Marquez
,
H. J.
,
2011
, “
Disturbance Observer-Based Control of Nonlinear Haptic Teleoperation Systems
,”
IET Control Theory and Appl.
,
5
(
18
), pp.
2063
2074
.10.1049/iet-cta.2010.0517
27.
Khalil
,
H. K.
,
2002
,
Nonlinear Systems
, 3rd ed.,
Prentice Hall, Upper Saddle River, NJ
.
28.
Hashemzadeh
,
F.
,
Tavakoli
,
M.
, and
Hassanzadeh
,
I.
,
2013
, “
Haptic Teleoperation Under Variable Delay and Actuator Saturation
,”
WHC
,
Daejeon
, Korea, Apr. 14–17, pp.
377
382
.10.1109/WHC.2013.6548438
29.
Bashash
,
S.
, and
Jalili
,
N.
,
2007
, “
Robust Multiple-Frequency Trajectory Tracking Control of Piezoelectrically-Driven Micro/Nano-Positioning Systems
,”
IEEE Trans. Control Syst. Technol.
,
15
(
3
), pp.
867
878
.10.1109/TCST.2007.902949
You do not currently have access to this content.