In some practical control problems of essentially continuous systems, the goal is not to tightly track a trajectory in state space, but only some aspects of the state at various points along the trajectory, and possibly only loosely. Here, we show examples in which classical discrete-control approaches can provide simple, low input-, and low output- bandwidth control of such systems. The sensing occurs at discrete state- or time-based events. Based on the state at the event, we set a small set of control parameters. These parameters prescribe features, e.g., amplitudes of open-loop commands that, assuming perfect modeling, force the system to, or toward, goal points in the trajectory. Using this discrete decision continuous actuation (DDCA) control approach, we demonstrate stabilization of two examples: (1) linear “dead-beat” control of a time delayed linearized inverted pendulum and (2) pumping of a hanging pendulum. Advantages of this approach include: It is computationally cheap compared to real-time control or online optimization; it can handle long time delays; it can fully correct disturbances in finite time (dead-beat control); it can be simple, using few control gains and set points and limited sensing; and it provides low bandwidth for both sensing and actuator commands. We have found the approach is useful for controlling robotic walking.

References

References
1.
Bhounsule
,
P. A.
,
Cortell
,
J.
,
Grewal
,
A.
,
Hendriksen
,
B.
,
Karssen
,
J. D.
,
Paul
,
C.
, and
Ruina
,
A.
,
2014
, “
Low-Bandwidth Reflex-Based Control for Lower Power Walking: 65 km on a Single Battery Charge
,”
Int. J. Rob. Res.
,
33
(
10
), pp.
1305
1321
.10.1177/0278364914527485
2.
Ruina
,
A.
,
2012
, Cornell Ranger 2011, 4-Legged Bipedal Robot, http://ruina.tam.cornell.edu/research/topics/locomotion\_and\_robotics/ranger/Ranger2011/
3.
Gawthrop
,
P. J.
, and
Wang
,
L.
,
2006
, “
Intermittent Predictive Control of an Inverted Pendulum
,”
Control Eng. Practice
,
14
(
11
), pp.
1347
1356
.10.1016/j.conengprac.2005.09.002
4.
Gawthrop
,
P. J.
, and
Wang
,
L.
,
2007
, “
Intermittent Model Predictive Control
,”
Proc. Inst. Mech. Eng., Part I
,
221
(
7
), pp.
1007
1018
.10.1243/09544054JEM515
5.
Gawthrop
,
P. J.
, and
Wang
,
L.
,
2009
, “
Event-Driven Intermittent Control
,”
Int. J. Control
,
82
(
12
), pp.
2235
2248
.10.1080/00207170902978115
6.
Gawthrop
,
P.
,
Wagg
,
D.
,
Neild
,
S.
, and
Wang
,
L.
,
2013
, “
Power-Constrained Intermittent Control
,”
Int. J. Control
,
86
(
3
), pp.
396
409
.10.1080/00207179.2012.733888
7.
Gawthrop
,
P.
,
Lee
,
K.-Y.
,
Halaki
,
M.
, and
O’Dwyer
,
N.
,
2013
, “
Human Stick Balancing: An Intermittent Control Explanation
,”
Biol. Cybern.
,
107
(
6
), pp.
637
652
.10.1007/s00422-013-0564-4
8.
Gawthrop
,
P.
,
Loram
,
I.
,
Gollee
,
H.
, and
Lakie
,
M.
,
2014
, “
Intermittent Control Models of Human Standing: Similarities and Differences
,”
Biol. Cybern.
,
108
(
2
), pp.
159
168
.10.1007/s00422-014-0587-5
9.
Gawthrop
,
P.
,
Gollee
,
H.
, and
Loram
,
I.
,
2014
, “
Intermittent Control in Man and Machine
,” preprint
arXiv:1407.3543
.
10.
Gawthrop
,
P.
,
2010
, “
Act-and-Wait and Intermittent Control: Some Comments
,”
IEEE Trans. Control Syst. Technol.
,
18
(
5
), pp.
1195
1198
.10.1109/TCST.2009.2034403
11.
van der Linde
,
R. Q.
,
1999
, “
Design, Analysis, and Control of a Low Power Joint for Walking Robots, by Phasic Activation of Mckibben Muscles
,”
IEEE Trans. Rob. Autom.
,
15
(
4
), pp.
599
604
.10.1109/70.781963
12.
Insperger
,
T.
,
2006
, “
Act-and-Wait Concept for Continuous-Time Control Systems With Feedback Delay
,”
IEEE Trans. Control Syst. Technol.
,
14
(
5
), pp.
974
977
.10.1109/TCST.2006.876938
13.
Insperger
,
T.
, and
Stépán
,
G.
,
2007
, “
Act-and-Wait Control Concept for Discrete-Time Systems With Feedback Delay
,”
IET Control Theor. Appl.
,
1
(
3
), pp.
553
557
.10.1049/iet-cta:20060051
14.
Smith
,
O. J. M.
,
1959
, “
A Controller to Overcome Dead Time
,”
ISA J. Instr. Soc. Am.
,
6
, pp.
28
33
.
15.
Hung
,
J. Y.
,
2007
, “
Posicast Control Past and Present
,”
IEEE Multidis. Eng. Ed. Mag.
,
21
(
1
), pp.
7
11
.
16.
Singer
,
N. C.
, and
Seering
,
W. P.
,
1990
, “
Preshaping Command Inputs to Reduce System Vibration
,”
ASME J. Dyn. Syst. Meas. Control
,
112
(
1
), pp.
76
82
.10.1115/1.2894142
17.
Singhose
,
W.
,
2009
, “
Command Shaping for Flexible Systems: A Review of the First 50 Years
,”
Int. J. Precision Eng. Manuf.
,
10
(
4
), pp.
153
168
.10.1007/s12541-009-0084-2
18.
Bhatt
,
S.
, and
Hsu
,
C.
,
1966
, “
Stability Criteria for Second-Order Dynamical Systems With Time Lag
,”
ASME J. Appl. Mech.
,
33
(
1
), pp.
113
118
.10.1115/1.3624967
19.
Stépán
,
G.
,
1989
,
Retarded Dynamical Systems: Stability and Characteristic Functions
, Vol.
200
,
Longman Scientific & Technical, Harlow, Essex
,
UK
.
20.
Fuller
,
A.
,
1968
, “
Optimal Nonlinear Control of Systems With Pure Delay?
,”
Int. J. Control
,
8
(
2
), pp.
145
168
.10.1080/00207176808905662
21.
Kleinman
,
D. L.
,
1969
, “
Optimal Control of Linear Systems With Time-Delay and Observation Noise
,”
IEEE Trans. Autom. Control
,
14
(
5
), pp.
524
527
.10.1109/TAC.1969.1099242
22.
Ogata
,
K.
,
1995
,
Discrete-Time Control Systems
,
Prentice-Hall
,
Englewood Cliffs, NJ
, pp.
416
417
.
23.
Bhounsule
,
P. A.
,
2014
, “
Control of a Compass Gait Walker Based on Energy Regulation Using Ankle Push-Off and Foot Placement
,”
Robotica, FirstView
, pp.
1
11
.10.1017/S0263574714000745
24.
Bhounsule
,
P. A.
,
2012
, “
A Controller Design Framework for Bipedal Robots: Trajectory Optimization and Event-Based Stabilization
,” Ph.D. thesis,
Cornell University
, Ithaca, NY.
25.
Bhounsule
,
P.
, and
Ruina
,
A.
,
2013
, Feedback Control of a Time Delayed Inverted Pendulum, http://youtube.com/watch?v=GCGeDHKNzm4 or http://tiny.cc/pranavb_delay, Nov.
2013
.
26.
Insperger
,
T.
,
Milton
,
J.
, and
Stépán
,
G.
,
2013
, “
Acceleration Feedback Improves Balancing Against Reflex Delay
,”
J. R. Soc. Interface
,
10
(
79
), p.
20120763
.10.1098/rsif.2012.0763
27.
Antsaklis
,
P. J.
, and
Michel
,
A. N.
,
2006
,
Linear Systems
,
Birkhauser
,
Boston, MA
, p.
201
.
You do not currently have access to this content.