In this paper, a new dynamic recurrent online sequential-extreme learning machine (DROS-ELM) OS-ELM with differential vector-kernel based principal component analysis (DV-KPCA) fault recognition approach is proposed to reconstruct the process feature and detect the process faults for real-time nonlinear system. Toward this end, the differential vector plus KPCA is first proposed to reduce the dimension of process data and enlarge the feature difference. In DV-KPCA, the differential vector is the difference between the input sample and the common sample, which is obtained from the historical data and represents the common invariant properties of the class. The optimal feature vectors of input sample and the common sample are obtained by KPCA procedure for the difference vectors. Through the differential operation between the input vectors and the common vectors, the reconstructed feature is derived by calculating the two-norm distance for the result of differential operation. The reconstructed features are then utilized to detect the process faults that may occur. In order to enhance the accuracy of fault recognition, a new DROS-ELM is developed by adding a self-feedback unit from the output of hidden layer to the input of hidden layer to record the sequential information. In the DROS-ELM, the output weight of feedback layer is updated dynamically by the change rate of output of the hidden layer. The DV-KPCA for feature reconstruction is exemplified using UCI handwriting (UCI handwriting recognition data: Database, using “Pen-Based Recognition of Handwritten Digits” produced in the Department of Computer Engineering Bogazici University, Istanbul 80815, Turkey, 1998), which the classification accuracy is obviously enhanced. Meanwhile, the DROS-ELM for process prediction is tested by the sunspot data from 1700 to 1987, which also shows better prediction accuracy than common methods. Finally, the new joint DROS-ELM with DV-KPCA method is exemplified in the complicated Tennessee Eastman (TE) benchmark process to illustrate the efficiencies. The results show that the DROS-ELM with DV-KPCA shows superiority not only in detection sensitivity and stability but also in timely fault recognition.
Skip Nav Destination
Article navigation
Research-Article
A New DROS-Extreme Learning Machine With Differential Vector-KPCA Approach for Real-Time Fault Recognition of Nonlinear Processes
Yuan Xu,
Yuan Xu
College of Information Science and Technology,
Beijing University of Chemical Technology
,Beijing 100029
, China
Search for other works by this author on:
Liang-Liang Ye,
Liang-Liang Ye
College of Information Science and Technology,
Beijing University of Chemical Technology
,Beijing 100029
, China
Search for other works by this author on:
Qun-Xiong Zhu
Qun-Xiong Zhu
1
College of Information Science and Technology,
e-mail: buct_ielab@163.com
Beijing University of Chemical Technology
,Beijing 100029
, China
e-mail: buct_ielab@163.com
1Corresponding author.
Search for other works by this author on:
Yuan Xu
College of Information Science and Technology,
Beijing University of Chemical Technology
,Beijing 100029
, China
Liang-Liang Ye
College of Information Science and Technology,
Beijing University of Chemical Technology
,Beijing 100029
, China
Qun-Xiong Zhu
College of Information Science and Technology,
e-mail: buct_ielab@163.com
Beijing University of Chemical Technology
,Beijing 100029
, China
e-mail: buct_ielab@163.com
1Corresponding author.
Contributed by the Dynamic Systems Division of ASME for publication in the JOURNAL OF DYNAMIC SYSTEMS, MEASUREMENT, AND CONTROL. Manuscript received June 16, 2014; final manuscript received September 25, 2014; published online December 10, 2014. Assoc. Editor: Hashem Ashrafiuon.
J. Dyn. Sys., Meas., Control. May 2015, 137(5): 051011 (10 pages)
Published Online: May 1, 2015
Article history
Received:
June 16, 2014
Revision Received:
September 25, 2014
Online:
December 10, 2014
Citation
Xu, Y., Ye, L., and Zhu, Q. (May 1, 2015). "A New DROS-Extreme Learning Machine With Differential Vector-KPCA Approach for Real-Time Fault Recognition of Nonlinear Processes." ASME. J. Dyn. Sys., Meas., Control. May 2015; 137(5): 051011. https://doi.org/10.1115/1.4028716
Download citation file:
Get Email Alerts
Cited By
Modeling and Experimental Validation of Flow Ripple in a Variable Displacement Linkage Pump
J. Dyn. Sys., Meas., Control (July 2025)
Parametrized Maximal Admissible Sets With Application to Constraint Management of Systems With Slowly Varying Parameters
J. Dyn. Sys., Meas., Control (July 2025)
An Integrated Sensor Fault Estimation and Fault-Tolerant Control Design Approach for Continuous-Time Switched Systems
J. Dyn. Sys., Meas., Control (July 2025)
Stabilization of a Rigid Body in Two Fluids With Surface Tension
J. Dyn. Sys., Meas., Control (September 2025)
Related Articles
An Anti-Windup Design for Linear System With Asymptotic Tracking Subjected to Actuator Saturation
J. Dyn. Sys., Meas., Control (June,2000)
H ∞ Synthesis of Nonlinear Feedback Systems in a Volterra Representation
J. Dyn. Sys., Meas., Control (September,2002)
Modeling of Conduction Mode Laser Welding Process For Feedback Control
J. Manuf. Sci. Eng (August,2000)
Analytic Bounds for Instability Regions in Periodic Systems With Delay via Meissner’s Equation
J. Comput. Nonlinear Dynam (January,2012)
Related Proceedings Papers
Related Chapters
An Algorithm Implementation about SVR Based on Spider
International Symposium on Information Engineering and Electronic Commerce, 3rd (IEEC 2011)
A Novel Clustering Approach for Manets Based on Mobility
International Conference on Computer and Computer Intelligence (ICCCI 2011)
A Method for Reducing the Number of Training Samples in KNN Text Classification
International Conference on Information Technology and Computer Science, 3rd (ITCS 2011)