A distributed approach is proposed for planning a cooperative tracking task for a team of heterogeneous unmanned aerial vehicles (UAVs) tracking multiple predictable ground targets in a known urban environment. The solution methodology involves finding visibility regions, from which the UAV can maintain line-of-sight to each target during the scenario, and restricted regions, in which a UAV cannot fly, due to the presence of buildings or other airspace limitations. These regions are then used to pose a combined task assignment and motion planning optimization problem, in which each UAV's cost function is associated with its location relative to the visibility and restricted regions, and the tracking performance of the other UAVs in the team. A distributed co-evolution genetic algorithm (CEGA) is derived for solving the optimization problem. The proposed solution is scalable, robust, and computationally parsimonious. The algorithm is centralized, implementing a distributed computation approach; thus, global information is used and the computational workload is divided between the team members. This enables the execution of the algorithm in relatively large teams of UAVs servicing a large number of targets. The viability of the algorithm is demonstrated in a Monte Carlo study, using a high fidelity simulation test-bed incorporating a visual database of an actual city.

References

1.
Shima
,
T.
,
Rasmussen
,
J. S.
,
Sparks
,
G. A.
, and
Passino
,
M. K.
,
2005
, “
Multiple Task Assignments for Cooperating Uninhabited Aerial Vehicles Using Genetic Algorithms
,”
Comput. Oper. Res.
,
33
(
11
), pp.
3252
3269
.10.1016/j.cor.2005.02.039
2.
Rasmussen
,
J. S.
, and
Shima
,
T.
,
2008
, “
Tree Search for Assigning Cooperating UAVs to Multiple Tasks
,”
Int. J. Robust Nonlinear Control
,
18
(
2
), pp.
135
153
.10.1002/rnc.1257
3.
Shima
,
T.
,
Rasmussen
,
S.
, and
Gross
,
D.
,
2007
, “
Assigning Micro UAVs to Task Tours in an Urban Terrain
,”
IEEE Trans. Control Syst. Technol.
,
15
(
4
), pp.
601
612
.10.1109/TCST.2007.899154
4.
Shanmugavel
,
M.
,
Tsourdos
,
A.
,
White
,
B.
, and
Żbikowski
,
R.
,
2010
, “
Co-Operative Path Planning of Multiple UAVs Using Dubins Paths With Clothoid Arcs
,”
Control Eng. Pract.
,
18
(
9
), pp.
1084
1092
.10.1016/j.conengprac.2009.02.010
5.
Shima
,
T.
,
Rasmussen
,
S.
, and
Chandler
,
P.
,
2007
, “
UAV Team Decision and Control Using Efficient Collaborative Estimation
,”
ASME J. Dyn. Syst. Meas. Contr.
,
129
(
5
), pp.
609
619
.10.1115/1.2764504
6.
Sinha
,
A.
, and
Ghose
,
D.
,
2007
, “
Control of Multi-Agent Systems Using Linear Cyclic Pursuit With Heterogenous Controller Gains
,”
ASME J. Dyn. Syst. Meas. Contr.
,
129
(
5
), pp.
742
748
.10.1115/1.2764505
7.
Shaferman
,
V.
, and
Shima
,
T.
,
2008
, “
Unmanned Aerial Vehicles Cooperative Tracking of Moving Ground Target in Urban Environments
,”
J. Guid. Control Dyn.
,
31
(
5
), pp.
1360
1371
.10.2514/1.33721
8.
Dubins
,
L.
,
1957
, “
On Curves of Minimal Length With a Constraint on Average Curvature, and With Prescribed Initial and Terminal Position
,”
Am. J. Math.
,
79
(
3
), pp.
497
516
.10.2307/2372560
9.
Shanmugavel
,
M.
,
Tsourdos
,
A.
,
White
,
A. B.
, and
Zbikowski
,
R.
,
2007
, “
Differential Geometric Path Planning of Multiple UAVs
,”
ASME J. Dyn. Syst. Meas. Contr.
,
129
(
5
), pp.
620
632
.10.1115/1.2767657
10.
Back
,
T.
,
Fogel
,
B. D.
, and
Michalewicz
,
Z.
,
2000
,
Evolutionary Computation Part 2, Advanced Algorithms and Operators
,
Institute of Physics in Press
,
Bristol, PA
.
11.
Sefrioui
,
M.
, and
Periaux
,
J.
,
2000
, “
Nash Genetic Algorithms: Examples and Applications
,”
Proceedings of the IEEE Congress on Evolutionary Computation
,
La Jolla, CA
, July 16–19, pp.
509
516
.10.1109/CEC.2000.870339
12.
Shaferman
,
V.
, and
Shima
,
T.
,
2008
, “
Co-Evolution Genetic Algorithms for UAV Distributed Tracking in Urban Environments
,”
ASME
Paper No. ESDA2008-59590.10.1115/ESDA2008-59590
13.
Goldberg
,
D. E.
,
1989
,
Genetic Algorithms in Search, Optimization, and Machine Learning
,
Addison-Wesley
,
Reading, MA
.
14.
Spall
,
C. J.
,
2003
,
Introduction to Stochastic Search and Optimization
,
Wiley-Interscience
,
Hoboken, NJ
.10.1002/0471722138
15.
Xiao
,
J.
,
Michalewicz
,
Z.
,
Zhang
,
L.
, and
Trojanowski
,
K.
,
1997
, “
Adaptive Evolutionary Planner/Navigator for Mobile Robots
,”
IEEE Trans. Evol. Comput.
,
1
(
1
), pp.
18
28
.10.1109/4235.585889
16.
Fogel
,
B. D.
, and
Fogel
,
J. L.
,
1990
, “
Optimal Routing of Multiple Autonomous Under Water Vehicles Through Evolutionary Programming
,”
Proceedings of the 1990 Symposium on Autonomous Underwater Vehicle Technology
, San Diego, CA, June 5–6, pp.
44
47
.10.1109/AUV.1990.11043
17.
Capozzi
,
J. B.
,
2001
, “
Evolution-Based Path Planning and Management for Autonomous Vehicles
,” Ph.D. thesis, University of Washington, Seattle, WA.
18.
Michalewicz
,
Z.
, and
Fogel
,
B. D.
,
2004
,
How to Solve It: Modern Heuristics
,
Springer
,
Berlin, Heidelberg, Germany
.10.1007/978-3-662-07807-5
19.
Nash
,
J. F.
,
1951
, “
Noncooperative Games
,”
Ann. Math.
,
54
(
2
), pp.
54
289
.10.2307/1969529
20.
Goodman
,
E. J.
, and
O'Rourke
,
J.
,
1997
,
Handbook of Discrete and Computational Geometry
,
CRC Press
,
Boca Raton, FL
.
You do not currently have access to this content.