In this paper, a sliding mode control (SMC) system based on combining chemical reaction optimization (CRO) algorithm with radial basis functional link net (RBFLN) for an n-link robot manipulator is proposed to achieve the high-precision position tracking. In the proposed scheme, a three-layer RBFLN with powerful approximation ability is employed to approximate the uncertainties, such as parameter variations, friction forces, and external disturbances, and to eliminate chattering phenomenon of the SMC. In order to achieve the expected performance in the initial phase as well as the improved convergence rate, the RBFLN parameters need to be optimized in advance. Therefore, the initial parameters of the RBFLN are optimized offline by CRO algorithm instead of random selection. Furthermore, the RBFLN weights are determined online according to adaptive tuning laws in the sense of a projection algorithm and the Lyapunov stability theorem to guarantee the stability and convergence of the system. The simulation results of three-link de-icing robot manipulator (DIRM) are provided to verify the robustness and effectiveness of the proposed methodology.

References

References
1.
Ge
,
S. S.
,
Hang
,
C. C.
, and
Woon
,
L. C.
,
1997
, “
Adaptive Neural Network Control of Robot Manipulators in Task Space
,”
IEEE Trans. Ind. Electron.
,
44
(
6
), pp.
746
752
.10.1109/41.649934
2.
Cheng
,
L.
,
Hou
,
Z.-G.
, and
Tan
,
M.
,
2009
, “
Adaptive Neural Network Tracking Control for Manipulators With Uncertain Kinematics, Dynamics and Actuator Model
,”
Automatica
,
45
(
10
), pp.
2312
2318
.10.1016/j.automatica.2009.06.007
3.
Edwards
,
C.
, and
Spurgeon
,
S. K.
,
1998
,
Sliding Mode Control: Theory and Applications
,
Taylor & Francis
,
London, UK
.
4.
Efe
,
M. O.
,
Yu
,
X.
, and
Kaynak
,
O.
,
2000
, “
Sliding Mode Control of a Three Degrees of Freedom Anthropoid Robot by Driving the Controller Parameters to an Equivalent Regime
,”
ASME J. Dyn. Syst. Meas. Contr.
,
122
(
4
), pp.
632
640
.10.1115/1.1318353
5.
Liu
,
K.
, and
Lewis
,
F. L.
,
1992
, “
Robust Control Techniques for General Dynamic Systems
,”
J. Intell. Rob. Syst.
,
6
(
1
), pp.
33
49
.10.1007/BF00314696
6.
Ishii
,
C.
,
Shen
,
T.
, and
Tamura
,
K.
,
1997
, “
Robust Model-Following Control for a Robot Manipulator
,”
IEE Proc. -Control Theory Appl.
,
144
(
1
), pp.
53
60
.10.1049/ip-cta:19970890
7.
Ertugrul
,
M.
, and
Kaynak
,
O.
,
2000
, “
Neuro Sliding Mode Control of Robotic Manipulators
,”
Mechatronics
,
10
(
1–2
), pp.
239
263
.10.1016/S0957-4158(99)00057-4
8.
Peng
,
J.
,
Wang
,
Y.
,
Sun
,
W.
, and
Liu
,
Y.
,
2006
, “
A Neural Network Sliding Mode Controller With Application to Robotic Manipulator
,”
Proceedings of the 6th World Congress on Intelligent Control and Automation (WCICA)
,
Dalian, China
, June 21–23, pp.
2101
2105
.10.1109/WCICA.2006.1712729
9.
Karami-Mollaee
,
A.
,
Pariz
,
N.
, and
Shanechi
,
H. M.
,
2011
, “
Position Control of Servomotors Using Neural Dynamic Sliding Mode
,”
ASME J. Dyn. Syst. Meas. Contr.
,
133
(
6
), p.
061014
.10.1115/1.4004782
10.
Omidvar
,
O.
, and
Elliott
,
D. L.
,
1997
,
Neural Systems for Control
,
Academic Press
,
New York
.
11.
Manzie
,
C.
,
Ralph
,
D.
,
Watson
,
H.
,
Yi
,
X.
, and
Palaniswami
,
M.
,
2002
, “
Model Predictive Control of a Fuel Injection System With a Radial Basis Function Network Observer
,”
ASME J. Dyn. Syst. Meas. Contr.
,
124
(
4
), pp.
648
658
.10.1115/1.1515328
12.
Billings
,
S. A.
,
Wei
,
H.-L.
, and
Balikhin
,
M. A.
,
2007
, “
Generalized Multiscale Radial Basis Function Networks
,”
Neural Networks
,
20
(
10
), pp.
1081
1094
.10.1016/j.neunet.2007.09.017
13.
Lu
,
H.-C.
,
Tsai
,
C.-H.
, and
Chang
,
M.-H.
,
2010
, “
Radial Basis Function Neural Network With Sliding Mode Control for Robotic Manipulators
,” 2010
IEEE
International Conference on Systems, Man and Cybernetics (SMC)
,
Istanbul, Turkey
, Oct. 10–13, pp.
1209
1215
.10.1109/ICSMC.2010.5642384
14.
Mahjoub
,
S.
,
Mnif
,
F.
,
Derbel
,
N.
, and
Hamerlain
,
M.
,
2014
, “
Radial-Basis-Functions Neural Network Sliding Mode Control for Underactuated Mechanical Systems
,”
Int. J. Dyn. Contr.
,
2
(
1
), pp.
1
9
.10.1007/s40435-014-0094-5
15.
Park
,
J.
, and
Sandberg
,
I. W.
,
1991
, “
Universal Approximation Using Radial-Basis-Function Networks
,”
Neural Comput.
,
3
(
2
), pp.
246
257
.10.1162/neco.1991.3.2.246
16.
Sadeghkhani
,
I.
,
Ketabi
,
A.
, and
Feuillet
,
R.
,
2012
, “
Radial Basis Function Neural Network Application to Power System Restoration Studies
,”
Comput. Intell. Neurosci.
,
2012
, p.
654895
.10.1155/2012/654895
17.
Looney
,
C. G.
,
1997
,
Pattern Recognition Using Neural Networks: Theory and Algorithms for Engineers and Scientists
,
Oxford University Press, Inc.
,
New York
.
18.
Looney
,
C. G.
,
2002
, “
Radial Basis Functional Link Nets and Fuzzy Reasoning
,”
Neurocomputing
,
48
(
1–4
), pp.
489
509
.10.1016/S0925-2312(01)00613-0
19.
Behnia
,
P.
,
2007
, “
Application of Radial Basis Functional Link Networks to Exploration for Proterozoic Mineral Deposits in Central Iran
,”
Nat. Resour. Res.
,
16
(
2
), pp.
147
155
.10.1007/s11053-007-9036-7
20.
Nykanen
,
V.
,
2008
, “
Radial Basis Functional Link Nets Used as a Prospectivity Mapping Tool for Orogenic Gold Deposits Within the Central Lapland Greenstone Belt, Northern Fennoscandian Shield
,”
Nat. Resour. Res.
,
17
(
1
), pp.
29
48
.10.1007/s11053-008-9062-0
21.
Lam
,
A. Y. S.
, and
Li
,
V. O. K.
,
2010
, “
Chemical-Reaction-Inspired Metaheuristic for Optimization
,”
IEEE Trans. Evol. Comput.
,
14
(
3
), pp.
381
399
.10.1109/TEVC.2009.2033580
22.
Lam
,
A. Y. S.
,
Li
,
V. O. K.
, and
Yu
,
J. J. Q.
,
2012
, “
Real-Coded Chemical Reaction Optimization
,”
IEEE Trans. Evol. Comput.
,
16
(
3
), pp.
339
353
.10.1109/TEVC.2011.2161091
23.
Whitley
,
D.
,
1994
, “
A Genetic Algorithm Tutorial
,”
Stat. Comput.
,
4
(
2
), pp.
65
85
.10.1007/BF00175354
24.
Kennedy
,
J.
,
2010
, “
Particle Swarm Optimization
,”
Encyclopedia of Machine Learning
,
C.
Sammut
and
G.
Webb
, eds.,
Springer
,
New York
, pp.
760
766
.
25.
Storn
,
R.
, and
Price
,
K.
,
1997
, “
Differential Evolution-A Simple and Efficient Heuristic for Global Optimization Over Continuous Spaces
,”
J. Global Optim.
,
11
(
4
), pp.
341
359
.10.1023/A:1008202821328
26.
Nag
,
P. K.
,
1995
,
Engineering Thermodynamics
,
Tata McGraw-Hill Education
,
New Delhi, India
.
27.
Yu
,
J. J. Q.
,
Lam
,
A. Y. S.
, and
Li
,
V. O. K.
,
2011
, “
Evolutionary Artificial Neural Network Based on Chemical Reaction Optimization
,” 2011
IEEE
Congress on Evolutionary Computation (CEC)
,
New Orleans, LA
, June 5–8, pp.
2083
2090
.10.1109/CEC.2011.5949872
28.
Lam
,
A. Y. S.
,
Li
,
V. O. K.
, and
Zhao
,
W.
,
2012
, “
Chemical Reaction Optimization for the Fuzzy Rule Learning Problem
,” 2012
IEEE
Congress on Evolutionary Computation (CEC)
,
Brisbane, Queensland
, June 10–15, pp.
1
8
.10.1109/CEC.2012.6256570
29.
Lam
,
A. Y. S.
,
Li
,
V. O. K.
, and
Yu
,
J. J. Q.
,
2013
, “
Power-Controlled Cognitive Radio Spectrum Allocation With Chemical Reaction Optimization
,”
IEEE Trans. Wireless Commun.
,
12
(
7
), pp.
3180
3190
.10.1109/TWC.2013.061713.120255
30.
Truong
,
T. K.
,
Li
,
K.
, and
Xu
,
Y.
,
2013
, “
Chemical Reaction Optimization With Greedy Strategy for the 0–1 Knapsack Problem
,”
Appl. Soft Comput.
,
13
(
4
), pp.
1774
1780
.10.1016/j.asoc.2012.11.048
31.
Ao
,
H.
,
Cheng
,
J.
,
Zheng
,
J.
, and
Truong
,
T. K.
,
2014
, “
Roller Bearing Fault Diagnosis Method Based on Chemical Reaction Optimization and Support Vector Machine
,”
J. Comput. Civ. Eng.
, p. 04014077.10.1061/(ASCE)CP.1943-5487.0000394
32.
Lewis
,
F. L.
,
Abdallah
,
C. T.
, and
Dawson
,
D. M.
,
1993
,
Control of Robot Manipulators
,
Macmillan Publishing Company
,
New York
.
33.
Chen
,
B.-S.
,
Uang
,
H.-J.
, and
Tseng
,
C.-S.
,
1998
, “
Robust Tracking Enhancement of Robot Systems Including Motor Dynamics: A Fuzzy-Based Dynamic Game Approach
,”
IEEE Trans. Fuzzy Syst
,
6
(
4
), pp.
538
552
.10.1109/91.728449
34.
Siciliano
,
B.
, and
Khatib
,
O.
,
2008
,
Springer Handbook of Robotics
,
Springer-Verlag
,
Berlin/Heidelberg, Germany
.10.1007/978-3-540-30301-5
35.
Slotine
,
J.-J. E.
, and
Li
,
W.
,
1991
,
Applied Nonlinear Control
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
36.
Spooner
,
J. T.
,
Maggiore
,
M.
,
Ordonez
,
R.
, and
Passino
,
K. M.
,
2002
,
Stable Adaptive Control and Estimation for Nonlinear Systems: Neural and Fuzzy Approximator Techniques
,
Wiley-Interscience
,
New York
.
37.
Mu
,
X.
,
2010
, “
Fuzzy Neural Sliding Mode Control Based on Genetic Algorithm for Multi-Link Robots
,”
Chinese Control and Decision Conference (CCDC)
,
Xuzhou, China
, May 26–28, pp.
1766
1770
.10.1109/CCDC.2010.5498524
38.
Wai
,
R.-J.
, and
Chen
,
P.-C.
,
2006
, “
Robust Neural-Fuzzy-Network Control for Robot Manipulator Including Actuator Dynamics
,”
IEEE Trans. Ind. Electron.
,
53
(
4
), pp.
1328
1349
.10.1109/TIE.2006.878297
39.
Astrom
,
K. J.
, and
Wittenmark
,
B.
,
1995
,
Adaptive Control
,
Addison-Wesley
,
Reading, MA
.
You do not currently have access to this content.