Agricultural field operations, such as harvesting for fruits and scouting for disease, are labor intensive and time consuming. With the recent push toward autonomous farming, a method to rapidly generate trajectories for a group of cooperative agricultural robots becomes necessary. The challenging aspect of solving this problem is to satisfy realistic constraints such as changing environments, actuation limitations, nonlinear heterogeneous dynamics, conflict resolution, and formation reconfigurations. In this paper, a hierarchical decision making and trajectory planning method is studied for a group of agricultural robots cooperatively conducting certain farming task such as citrus harvesting. Within the algorithm framework, there are two main parts (cooperative level and individual level): (1) in the cooperative level, once a discrete reconfiguration event is confirmed and replanning is triggered, all the possible formation configurations and associated robot locations for specific farming tasks will be evaluated and ranked according to the feasibility condition and the cooperative level performance index; and (2) in the individual level, a local pursuit (LP) strategy based cooperative trajectory planning algorithm is designed to generate local optimal cooperative trajectories for agricultural robots to achieve and maintain their desired operation formation in a decentralized manner. The capabilities of the proposed method are demonstrated in a citrus harvesting problem.

References

References
1.
Liu
,
L.
,
Crowe
,
T. G.
, and
Roberge
,
M.
,
2009
, “
Sensor-Based Scouting Algorithms for Automatic Sampling Tasks in Rough and Large Unstructured Agricultural Fields
,”
Trans. ASABE
,
52
(
1
), pp.
285
294
.10.13031/2013.25934
2.
Billingsley
,
J.
,
Oetomo
,
D.
, and
Reid
,
J.
,
2009
, “
Agricultural Robotics
,”
IEEE Rob. Autom. Mag.
,
16
(
4
), pp.
16
19
.10.1109/MRA.2009.934829
3.
Edan
,
Y.
,
Rogozin
,
D.
,
Flash
,
T.
, and
Miles
,
G.
,
2000
, “
Robotic Melon Harvesting
,”
IEEE Trans. Rob. Autom.
,
16
(
4
), pp.
831
835
.10.1109/70.897793
4.
Edan
,
Y.
,
Flash
,
T.
,
Peiper
,
U.
,
Shmulevich
,
I.
, and
Sarig
,
Y.
,
1991
, “
Near-Minimum-Time Task Planning for Fruit-Picking Robots
,”
IEEE Trans. Rob. Autom.
,
7
(
1
), pp.
48
56
.10.1109/70.68069
5.
Xie
,
Y.
, and
Alleyne
,
A.
,
2014
, “
Two Degree of Freedom Control Synthesis With Applications to Agricultural Systems
,”
ASME J. Dyn. Syst. Meas. Control
,
136
(
5
), pp.
051006-1
051006-11
.10.1115/1.4027157
6.
http://www.rhea-conference.eu/2014/ (Last accessed on Feb. 20,
2014
).
8.
Muraro
,
R. P.
, Summary of 2008–2009 Citrus Budget for the Southwest Florida Production Region, University of Florida, IFAS, CREC, Lake Alfred, FL.
9.
Li
,
M.
,
Imou
,
K.
,
Wakabayashi
,
K.
, and
Yokoyama
,
S.
,
2009
, “
Review of Research on Agricultural Vehicle Autonomous Guidance
,”
Int. J. Agric. Biol. Eng.
,
2
(
3
), pp.
1
26
.
10.
O’Connor
,
M.
,
Bell
,
T.
,
Elkaim
,
G.
, and
Parkinson
,
B.
,
1996
, “
Automatic Steering of Farm Vehicles Using GPS
,”
3rd International Conference on Precision Agriculture
,
Minneapolis, MN
, June 23–26, pp.
767
777
.
11.
Linker
,
R.
, and
Blass
,
T.
,
2008
, “
Path-Planning Algorithm for Vehicles Operating in Orchards
,”
Biosyst. Eng
,
101
(
2
), pp.
152
160
.10.1016/j.biosystemseng.2008.06.002
12.
Moorehead
,
S. J.
,
Wellington
,
C. K.
,
Gilmore
,
B. J.
, and
Vallespi
,
C.
,
2012
, “
Automating Orchards: A System of Autonomous Tractors for Orchard Maintenance
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems Workshop on Agricultural Robotics
,
Vilamoura, Portugal
.
13.
Hamner
,
B.
,
Bergerman
,
M.
, and
Singh
,
S.
,
2012
, “
Specialty Crop Automation with Autonomous Vehicles
,”
International Conference on Robotics and Automation
,
St. Paul, MN
, May 14–18, pp.
1829
1835
.
14.
Shiller
,
Z.
, and
Gwo
,
Y. R.
,
1991
, “
Dynamic Motion Planning of Autonomous Vehicles
,”
IEEE Trans. Robot. Autom.
,
7
(
2
), pp.
241
249
.10.1109/70.75906
15.
Pitla
,
S. K.
,
Luck
,
J. D.
, and
Shearer
,
S. A. S.
,
2010
, “
Multi-Robot System Control Architecture (MRSCA) for Agricultural Production
,”
American Society of Agricultural and Biological Engineers International Meeting
,
Pittsburgh, PA
, June 20–23.
16.
Noguhi
,
N.
,
Will
,
J.
,
Ishii
,
K.
, and
Reid
,
J.
,
2002
, “
Development of Master-Slave Robot System Obstacle Avoidance Algorithm
,”
Automation Technology for Off-Road Equipment Conference
,
Chicago, IL
, July 26–27, pp.
432
441
.
17.
Choi
,
H. L.
,
Brunet
,
L.
, and
How
,
J. P.
,
2009
, “
Consensus-Based Decentralized Auctions for Robust Task Allocation
,”
IEEE Trans. Rob.
,
25
(
4
), pp.
912
926
.10.1109/TRO.2009.2022423
18.
Ren
,
W.
, and
Beard
,
R. W.
,
2008
,
Distributed Consensus in Multi-Vehicle Cooperative Control—Theory and Application
,
Springer-Verlag
,
London
, UK.
19.
Girard
,
A. R.
,
de Sousa
,
J. B.
, and
Hedrick
,
J. K.
,
2001
, “
An Overview of Emerging Results in Networked, Multi-Vehicle Systems
,”
40th IEEE Conference on Decision and Control
,
Orlando, FL
, Dec. 4–7, pp.
1485
1490
.
20.
Xue
,
D.
,
Yao
,
J.
,
Chen
,
G.
, and
Yu
,
Y. L.
,
2010
, “
Formation Control of Networked Multi-Agent Systems
,”
IET Control Theory Appl.
,
4
(
10
), pp.
2168
2176
.10.1049/iet-cta.2009.0574
21.
Cortes
,
J.
,
Martinez
,
S.
, and
Bullo
,
F.
,
2006
, “
Robust Rendezvous for Mobile Autonomous Agents Via Proximity Graphs in Arbitrary Dimensions
,”
IEEE Trans. Autom. Control
,
51
(
9
), pp.
1289
1298
.10.1109/TAC.2006.878713
22.
Olfati-Saber
,
R.
, and
Murray
,
R. M.
,
2004
, “
Consensus Problems in Networks of Agents With Switching Topology and Time-Delays
,”
IEEE Trans. Autom. Control
,
49
(
9
), pp.
1520
1533
.10.1109/TAC.2004.834113
23.
Kim
,
Y. S.
, and
Mesbahi
,
M.
,
2006
, “
On Maximizing the Second Smallest Eigenvalue of a State Dependent Graph Laplacian
,”
IEEE Trans. Autom. Control
,
51
(
1
), pp.
116
120
.10.1109/TAC.2005.861710
24.
Wang
,
J.
, and
Xin
,
M.
,
2010
, “
Multi-Agent Consensus Algorithm With Obstacle Avoidance Via Optimal Control Approach
,”
Int. J. Control
,
83
(
12
), pp.
2606
2621
.10.1080/00207179.2010.535174
25.
Xu
,
Y.
,
Xin
,
M.
,
Wang
,
J.
, and
Jayasuriya
,
S.
,
2012
, “
Hierarchical Control of Cooperative Nonlinear Dynamical Systems
,”
Int. J. Control
,
85
(
8
), pp.
1093
1111
.10.1080/00207179.2012.677067
26.
Seyboth
,
G. S.
,
Schmidt
,
G. S.
, and
Allgower
,
F.
,
2012
, “
Cooperative Control of Linear Parameter-Varying Systems
,”
American Control Conference
,
Montreal, Canada
, June 27–29, pp.
2407
2412
.
27.
Qu
,
Z.
,
Wang
,
J.
, and
Hull
,
R. A.
,
2008
, “
Cooperative Control of Dynamical Systems with Application to Autonomous Vehicles
,”
IEEE Trans. Autom. Control
,
53
(
4
), pp.
894
911
.10.1109/TAC.2008.920232
28.
Dong
,
W. J.
, and
Farrell
,
J. A.
,
2008
, “
Cooperative Control of Multiple Nonholonomic Mobile Agents
,”
IEEE Trans. Autom. Control
,
53
(
6
), pp.
1434
1448
.10.1109/TAC.2008.925852
29.
Lou
,
J.
,
Cooper
,
J.
,
Cao
,
C.
, and
Pham
,
K.
,
2012
, “
Cooperative Adaptive Control of a Two-Agent System
,”
American Control Conference
,
Montreal, Canada
, June 27–29, pp.
2413
2418
.
30.
Su
,
H.
,
Chen
,
G.
,
Wang
,
X.
, and
Lin
,
Z.
,
2010
, “
Adaptive Second-Order Consensus of Networked Mobile Agents With Nonlinear Dynamics
,”
Automatica
,
46
(
2
), pp.
368
375
.10.1016/j.automatica.2010.02.025
31.
Karkee
,
M.
,
2009
, “
Modeling, Identification, and Analysis of Tractor and Single Axle toward Implement System
,” Dissertation,
Iowa State University
, Ames, IA.
32.
Xu
,
Y.
,
Remeikas
,
C.
, and
Pham
,
K.
,
2014
, “
Local Pursuit Strategy Inspired Cooperative Trajectory Planning Algorithm for a Class of Nonlinear Constrained Dynamical Systems
,”
Int. J. Control
,
87
(
3
), pp.
506
523
.10.1080/00207179.2013.845911
33.
Blackmore
,
B. S.
,
Fountas
,
S.
,
Vougioukas
,
S.
,
Tang
,
L.
,
Sørensen
,
C. G.
, and
Jørgensen
,
R.
,
2004
, “
A Method to Define Agricultural Robot Behaviors
,”
Mechatronics & Robotics Conference
,
Aachen, Germany
, Sept. 13–17, pp.
1197
1200
.
34.
Lee
,
K. H.
,
Ehsani
,
R.
, and
Schueller
,
J. K.
,
2007
, “
Forward Movement Synchronization of Two Vehicles in Parallel Using a Laser Scanner
,”
Appl. Eng. Agric.
,
23
(
6
), pp.
827
834
.10.13031/2013.24050
35.
Udumala Savary
,
S. K. J.
,
Ehsani
,
R.
,
Salyani
,
M.
,
Hebel
,
M. A.
, and
Bora
,
G. C.
,
2011
, “
Study of Force Distribution in the Citrus Tree Canopy During Harvest Using a Continuous Canopy Shaker
,”
Comput. Electron. Agric.
,
76
(
1
), pp.
51
58
.10.1016/j.compag.2011.01.005
36.
Pepy
,
R.
,
Lambert
,
A.
, and
Mounier
,
H.
,
2006
, “
Path Planning Using a Dynamic Vehicle Model
,”
Information and Communication Technologies
,
Damascus, Syria
, Apr. 24–28, pp.
781
786
.
37.
Ozdal
,
M. M.
, and
Wong
,
M. D. F.
,
2009
, “
Global Routing Formulation and Maze Routing
,”
Handbook of Algorithms for Physical Design Automation
, C. J. Alpert, D. P. Mehta, and S. S. Sapatnekar, eds.,
Taylor & Francis Group
,
Boca Raton, FL
.
38.
Cormen
,
T.
,
Leiserson
,
C.
,
Rivest
,
R.
, and
Stein
,
C.
,
2009
,
Introduction to Algorithms
,
The MIT Press
,
Cambridge, MA
.
39.
Piegl
,
L.
, and
Tiller
,
W.
,
1997
,
The NURBS Book
,
2nd ed.
,
Springer-Verlag
,
New York
.
40.
Rao
,
C. V.
,
Wright
,
S. J.
, and
Rawlings
,
J. B.
,
1998
, “
Application of Interior-Point Methods to Model Predictive Control
,”
J. Optim. Theory Appl.
,
99
(
3
), pp.
723
757
.10.1023/A:1021711402723
41.
Dunbar
,
W. B.
,
2007
, “
Distributed Receding Horizon Control of Dynamically Coupled Nonlinear Systems
,”
IEEE Trans. Autom. Control
,
52
(
7
), pp.
1249
1263
.10.1109/TAC.2007.900828
42.
Hristu-Varsakelis
,
D.
, and
Shao
,
C.
,
2004
, “
Biologically-Inspired Optimal Control: Learning From Social Insects
,”
Int. J. Control
,
77
(
18
), pp.
1549
1566
.10.1080/00207170412331330098
43.
Fahroo
,
F.
, and
Ross
,
I. M.
,
2001
, “
Costate Estimation by a Legendre Pseudospectral Method
,”
J. Guid. Control Dynam.
,
24
(
2
), pp.
270
275
.10.2514/2.4709
44.
http://www.oxbocorp.com/Products/Citrus.aspx (Last accessed on Mar. 3,
2014
).
You do not currently have access to this content.