Multimode modified positive position feedback (MMPPF) is proposed to suppress vibrations at multi-resonance frequencies in flexible collocated structures. Typically, flexible structures have large numbers of active modes in low frequency bandwidths, which make them susceptible to multi-frequency resonant vibrations. Hence, it is essential for the controller to have effective suppression on all participating modes. The MMPPF controller consists of a first- and a second-order compensator for each mode, as they are all set parallel for all active modes. Because of suppression performance sensitivity to controller gain parameters, proper gain selection is essential. Here, the linear quadratic regulator (LQR) approach and a proposed method called M-norm are used for gain optimization of the MMPPF controller. The optimized controller is then evaluated experimentally using a cantilever beam, enhanced by a piezoelectric actuator. According to the obtained results, the MMPPF controller reduces vibration amplitudes to the expected lower level, under both LQR and M-norm optimization methods. In some cases, vibration amplitude at the place of piezo-actuator is reduced to even less than the vibration amplitude level of the disturbance input at clamped end.

References

References
1.
Hu
,
Q.
,
2010
, “
Robust Adaptive Attitude Tracking Control With L2-Gain Performance and Vibration Reduction of an Orbiting Flexible Spacecraft
,”
ASME J. Dyn. Syst. Meas. Control
,
133
(
1
), p.
011009
.10.1115/1.4001703
2.
Lei
,
J.
,
2013
, “
Optimal Vibration Control for Uncertain Nonlinear Sampled-Data Systems With Actuator and Sensor Delays: Application to a Vehicle Suspension
,”
ASME J. Dyn. Syst. Meas. Control
,
135
(
2
), p.
021021
.10.1115/1.4023060
3.
Dhanda
,
A.
,
2014
, “
Projected Phase-Plane Switching Curves for Vibration Reduction Filters With Negative Amplitudes
,”
ASME J. Dyn. Syst. Meas. Control
,
136
(
5
), p.
051014
.10.1115/1.4027203
4.
Cao
,
Y.
, and
Chen
,
X. B.
,
2014
, “
A Survey of Modeling and Control Issues for Piezo-Electric Actuators
,”
ASME J. Dyn. Syst. Meas. Control
,
137
(
1
), p.
014001
.10.1115/1.4028055
5.
Korayem
,
M. H.
, and
Omidi
,
E.
,
2012
, “
Robust Controlled Manipulation of Nanoparticles Using Atomic Force Microscope
,”
Micro Nano Lett.
,
7
(
9
), pp.
927
931
.10.1049/mnl.2012.0293
6.
Omidi
,
E.
,
Korayem
,
A. H.
, and
Korayem
,
M. H.
,
2013
, “
Sensitivity Analysis of Nanoparticles Pushing Manipulation by AFM in a Robust Controlled Process
,”
Precis. Eng.
,
37
(
3
), pp.
658
670
.10.1016/j.precisioneng.2013.01.011
7.
Edamana
,
B.
, and
Oldham
,
K. R.
,
2013
, “
Optimal Low-Power Piezoelectric Actuator Control with Charge Recovery for a Microrobotic Leg
,”
IEEE/ASME Trans. Mechatron.
,
18
(
1
), pp.
251
262
.10.1109/TMECH.2011.2165079
8.
Islam
,
R. A.
,
Kim
,
H.
, and
Priya
,
S.
,
2006
, “
Piezoelectric Transformer Based Ultrahigh Sensitivity Magnetic Field Sensor
,”
Appl. Phys. Lett.
,
89
(
15
), p.
152908
.10.1063/1.2357941
9.
Hu
,
J.
, and
Zhu
,
D.
,
2012
, “
Vibration Control of Smart Structure Using Sliding Mode Control With Observer
,”
J. Comput.
,
7
(
2
), pp.
411
418
10.4304/jcp.7.2.411-418.
10.
Jha
,
R.
, and
Rower
,
J.
,
2002
, “
Experimental Investigation of Active Vibration Control Using Neural Networks and Piezoelectric Actuators
,”
Smart Mater. Struct.
,
11
(
1
), pp.
115
121
.10.1088/0964-1726/11/1/313
11.
Fanson
,
J. L.
, and
Caughey
,
T. K.
,
1990
, “
Positive Position Feedback Control for Large Space Structures
,”
AIAA J.
,
28
(
4
), pp.
717
724
.10.2514/3.10451
12.
Moheimani
,
S. O. R.
,
Vautier
,
B. J. G.
, and
Bhikkaji
,
B.
,
2006
, “
Experimental Implementation of Extended Multivariable PPF Control on an Active Structure
,”
IEEE Trans. Control Syst. Technol.
,
14
(
3
), pp.
443
455
.10.1109/TCST.2006.872532
13.
Mahmoodi
,
S. N.
, and
Ahmadian
,
M.
,
2009
, “
Active Vibration Control With Modified Positive Position Feedback
,”
ASME J. Dyn. Syst. Meas. Control
,
131
(
4
), p.
041002
.10.1115/1.3089565
14.
Mahmoodi
,
S. N.
,
Ahmadian
,
M.
, and
Inman
,
D. J.
,
2010
, “
Adaptive Modified Positive Position Feedback for Active Vibration Control of Structures
,”
J. Intell. Mater. Syst. Struct.
,
21
(
6
), pp.
571
580
.10.1177/1045389X10361631
15.
Kumar
,
R.
,
2013
, “
Efficient Active Vibration Control of Smart Structures With Modified Positive Position Feedback Control Using Pattern Search Methods in the Presence of Instrumentation Phase Lead and Lag
,”
ASME J. Dyn. Syst. Meas. Control
,
135
(
6
), p.
061001
.10.1115/1.4024603
16.
Lin
,
J.
, and
Zheng
,
Y. B.
,
2012
, “
Vibration Suppression Control of Smart Piezoelectric Rotating Truss Structure by Parallel Neuro-Fuzzy Control With Genetic Algorithm Tuning
,”
J. Sound Vib.
,
331
(
16
), pp.
3677
3694
.10.1016/j.jsv.2012.04.001
17.
Rodriguez-Fortun
,
J.
,
Orus
,
J.
, and
Alfonso
,
J.
,
2013
, “
Flatness-Based Active Vibration Control for Piezoelectric Actuators
,”
IEEE/ASME Trans. Mechatron.
,
18
(
1
), pp.
221
229
.10.1109/TMECH.2011.2166998
18.
Viant
,
J.
,
Quiquerez
,
L.
, and
Lombard
,
P.
,
2013
, “
An ASIC-Based Vibration Damping System
,”
IEEE/ASME Trans. Mechatron.
,
18
(
1
), pp.
148
154
.10.1109/TMECH.2011.2162651
19.
Meirovitch
,
L.
,
2001
,
Fundamentals of Vibrations
,
McGraw-Hill Higher Education
,
New York
.
20.
Martin
,
G. D.
,
1978
,
On the Control of Flexible Mechanical Systems
,
Stanford University
,
Palo Alto, CA
.
21.
Clark
,
R. L.
,
1997
, “
Accounting for Out-of-Bandwidth Modes in the Assumed Modes Approach: Implications on Collocated Output Feedback Control
,”
ASME J. Dyn. Syst. Meas. Control
,
119
(
3
), pp.
390
395
.10.1115/1.2801270
22.
Goh
,
C. J.
, and
Caughey
,
T. K.
,
1985
, “
On the Stability Problem Caused by Finite Actuator Dynamics in the Collocated Control of Large Space Structures
,”
Int. J. Control
,
41
(
3
), pp.
787
802
.10.1080/0020718508961163
23.
Moheimani
,
S. O. R.
,
2000
, “
Experimental Verification of the Corrected Transfer Function of a Piezoelectric Laminate Beam
,”
IEEE Trans. Control Syst. Technol.
,
8
(
4
), pp.
660
666
.10.1109/87.852911
24.
DengQing
,
C.
, and
Na
,
Z.
,
2011
, “
Active Control of Supersonic/Hypersonic Aeroelastic Flutter for a Two-Dimensional Airfoil With Flap
,”
Sci. China Ser. E: Technol. Sci.
,
54
(
8
), pp.
1943
1953
.10.1007/s11431-011-4467-0
25.
Fallah
,
N.
, and
Ebrahimnejad
,
M.
,
2013
, “
Active Control of Building Structures using Piezoelectric Actuators
,”
Appl. Soft Comput.
,
13
(
1
), pp.
449
461
.10.1016/j.asoc.2012.08.010
You do not currently have access to this content.