In this article, a multivariable control design scheme is proposed for the reference trajectory tracking task in a kinematic model of a mobile robot. The control scheme leads to time-varying linear controllers accomplishing the reference trajectory tracking task. The proposed controller design is crucially based on the flatness property of the system leading to controlling an asymptotically decoupled set of chains of integrators by means of a linear output feedback control scheme. The feedforward linearizing control scheme is invoked and complemented with the, so called, generalized proportional integral (GPI) control scheme. Numerical simulations, as well as laboratory experimental tests, are presented for the assessment of the proposed design methodology.

References

References
1.
Dixon
,
W.
,
Dawson
,
D.
,
Zergeroglu
,
E.
, and
Behal
,
A.
,
2001
,
Nonlinear Control of Wheeled Mobile Robots (Lecture Notes in Control and Information Sciences)
, Vol.
262
,
Springer
,
London, UK
.
2.
Menezes
,
P.
,
Lerasle
,
F.
, and
Dias
,
J.
,
2011
, “
Towards Human Motion Capture From a Camera Mounted on a Mobile Robot
,”
Image Vision Comput.
,
29
(
6
), pp.
382
393
.10.1016/j.imavis.2011.01.003
3.
Vermeiren
,
L.
,
Dequidt
,
A.
,
Guerra
,
T.
,
Rago-Tirmant
,
H.
, and
Parent
,
M.
,
2011
, “
Modeling, Control and Experimental Verification on a Two-Wheeled Vehicle With Free Inclination: An Urban Transportation System
,”
Control Eng. Pract.
,
19
(
7
), pp.
744
756
.10.1016/j.conengprac.2011.04.002
4.
Bloch
,
A.
,
Crouch
,
P.
,
Bailleul
,
J.
, and
Marsden
,
J.
,
2003
, “
Nonholonomic Mechanics and Control
” (Interdisciplinary Applied Mathematics),
Springer-Verlag
,
New York
.10.1007/b97376
5.
Brockett
,
R.
,
1983
, “
Asymptotic Stability and Feedback Stabilization
,”
Differential Geometric Control Theory
,
R. W.
Brockett
,
R. S.
Millman
,
H. J.
Sussmann
, eds., Birkhäuser, NJ, pp.
181
191
.
6.
Aguilar
,
L.
,
Hamel
,
T.
, and
Soueres
,
P.
,
1997
, “
Robust Path Following Control for Wheeled Robots Via Sliding Mode Techniques
,”
International Conference of Intelligent Robotic Systems
, pp.
1389
1395
.
7.
Wang
,
Z.
,
Li
,
S.
, and
Fei
,
S.
,
2009
, “
Finite-Time Tracking Control of a Nonholonomic Mobile Robot
,”
Asian J. Control
,
11
(
3
), pp.
344
357
.10.1002/asjc.112
8.
Yang
,
J.
, and
Kim
,
J.
,
1999
, “
Sliding Mode Control for Trajectory Tracking of Nonholonomic Wheeled Mobile Robots
,”
IEEE Trans. Rob. Autom.
,
15
(
3
), pp.
578
587
.10.1109/70.768190
9.
Hou
,
Z.
,
Zou
,
A.
,
Cheng
,
L.
, and
Tan
,
M.
,
2009
, “
Adaptive Control of an Electrically Driven Nonholonomic Mobile Robot Via Backstepping and Fuzzy Approach
,”
IEEE Trans. Control Syst. Technol.
,
17
(
4
), pp.
803
815
.10.1109/TCST.2009.2012516
10.
Peng
,
J.
,
Wang
,
Y.
, and
Yu
,
H.
,
2007
, “
Neural Network-Based Robust Tracking Control for Nonholonomic Mobile Robot
,”
Advances in Neural Networks (Lecture Notes in Computer Science)
, Vol.
4491
,
D.
Liu
,
S.
Fei
,
Z.
Hou
,
H.
Zhang
, and
C.
Sun
, eds.,
Springer
,
Berlin/Heidelberg, Germany
, pp.
804
812
.
11.
Kim
,
D.
, and
Oh
,
J.
,
1999
, “
Tracking Control of a Two-Wheeled Mobile Robot Using Input-Output Linearization
,”
Control Eng. Pract.
,
7
(
3
), pp.
369
373
.10.1016/S0967-0661(98)00184-1
12.
Sugisaka
,
M.
, and
Hazry
,
D.
,
2007
, “
Development of a Proportional Control Method for a Mobile Robot
,”
Appl. Math. Comput.
,
186
, pp.
74
82
.10.1016/j.amc.2006.05.214
13.
De Wit
,
C. C.
, and
Sordalen
,
O.
,
1992
, “
Exponential Stabilization of Mobile Robots With Nonholonomic Constraints
,”
IEEE Trans. Autom. Control
,
37
(
11
), pp.
1791
1797
.10.1109/9.173153
14.
Pomet
,
J.
,
1992
, “
Explicit Design of Time-Varying Stabilizing Control Laws for a Class of Controllable Systems Without Drift
,”
Syst. Control Lett.
,
18
(
2
), pp.
147
158
.10.1016/0167-6911(92)90019-O
15.
Tian
,
Y.
, and
Cao
,
K.
,
2007
, “
Time-Varying Linear Controllers for Exponential Tracking of Non-Holonomic Systems in Chained Form
,”
Int. J. Robust Nonlinear Control
,
17
, pp.
631
647
.10.1002/rnc.1149
16.
Samson
,
C.
,
1991
, “
Velocity and Torque Feedback Control of a Nonholonomic Cart
,”
Advanced Robot Control (Lecture Notes in Control and Information Sciences)
, Vol.
162
,
C.
Canudas de Wit
, ed.,
Springer
, Berlin/Heidelberg, Germany, pp.
125
151
.
17.
Fliess
,
M.
,
Lévine
,
J.
,
Martin
,
P.
, and
Rouchon
,
P.
,
1995
, “
Flatness and Defect of Non-Linear Systems: Introductory Theory and Examples
,”
Int. J. Control
,
61
(
6
), pp.
1327
1361
.10.1080/00207179508921959
18.
Lévine
,
J.
,
2009
,
Analysis and Control of Nonlinear Systems: A Flatness-Based Approach
,
Springer
, Berlin/Heidelberg, Germany.
19.
Sira-Ramírez
,
H.
, and
Agrawal
,
S.
,
2004
,
Differentially Flat Systems
,
Marcel Dekker
, New York.
20.
D'Andrea-Novel
,
W. L. B.
,
1996
, “
Modeling and Control of Wheeled Mobile Robots Not Satisfying Ideal Velocity Constraints: The Unicycle Case
,”
Proceedings of the 35th IEEE Conference on Decision and Control
, Vol.
2
, pp.
1437
1442
.
21.
Ryu
,
J.
,
Sangwan
,
V.
, and
Agrawal
,
S.
,
2010
, “
Differentially Flat Designs of Underactuated Mobile Manipulators
,”
ASME J. Dyn. Syst. Meas. Contr.
,
132
(
2
), p.
024502
.10.1115/1.4000815
22.
Hagenmeyer
,
V.
, and
Delaleau
,
E.
,
2003
, “
Exact Feedforward Linearisation Based on Differential Flatness: The SISO Case
,”
Nonlinear and Adaptive Control (Lecture Notes in Control and Information Sciences)
, Vol.
281
,
A.
Zinober
,
D.
Owens
, eds.,
Springer-Verlag
,
Berlin, Germany
, pp.
161
170
.
23.
Marquez
,
R.
,
Delaleau
,
E.
, and
Fliess
,
M.
,
2000
, “
Commande par PID Généralisé d'un Moteur Électrique Sans Capteur Mécanique
,”
Première Conférence Internationale Francophone d'Automatique
, Vol.
1
, pp.
453
458
.
24.
Arteaga
,
M.
, and
Kelly
,
R.
,
2004
, “
Robot Control Without Velocity Measurements: New Theory and Experimental Results
,”
IEEE Trans. Rob. Autom.
,
20
(
2
), pp.
297
308
.10.1109/TRA.2003.820872
25.
El-Gohary
,
A.
, and
Tawfik
,
T.
,
2010
, “
Optimal Control of a Rigid Body Motion Using Euler Parameters Without Angular Velocity Measurements
,”
Mech. Res. Commun.
,
37
(
3
), pp.
354
359
.10.1016/j.mechrescom.2010.02.004
26.
Zurita-Bustamante
,
E.
,
Linares-Flores
,
J.
,
Guzmán-Ramírez
,
E.
, and
Sira-Ramírez
,
H.
,
2011
, “
A Comparison Between the GPI and PID Controllers for the Stabilization of a DC–DC “Buck” Converter: A Field Programmable Gate Array Implementation
,”
IEEE Trans. Ind. Electron.
,
58
(
11
), pp.
5251
5262
.10.1109/TIE.2011.2123857
27.
Fliess
,
M.
,
Marquez
,
R.
,
Delaleau
,
E.
, and
Sira-Ramírez
,
H.
,
2002
, “
Correcteurs proportionnels - intégraux généralisés
,”
ESAIM: Control Optim. Calculus Var.
,
7
, pp.
23
41
.10.1051/cocv:2002002
28.
Spong
,
M.
,
Hutchinson
,
S.
, and
Vidyasagar
,
M.
,
2006
,
Robot Modeling and Control
,
Wiley
,
New York
.
29.
Hagenmeyer
,
V.
, and
Delaleau
,
E.
,
2003
, “
Exact Feedforward Linearisation Based on Differential Flatness
,”
Int. J. Control
,
76
(
6
), pp.
537
556
.10.1080/0020717031000089570
30.
Hagenmeyer
,
V.
, and
Delaleau
,
E.
,
2008
, “
Continuous-Time Non-Linear Flatness-Based Predictive Control: An Exact Feedforward Linearisation Setting With an Induction Drive Sample
,”
Int. J. Control
,
81
(
10
), pp.
1645
1663
.10.1080/00207170802090177
31.
Fliess
,
M.
, and
Sira-Ramirez
,
H.
,
2004
, “
Reconstructeurs d’état
,”
C.R. Math.
,
338
(
1
), pp.
91
96
.10.1016/j.crma.2003.11.004
32.
Marquez
,
R.
,
Fliess
,
M.
, and
Mounier
,
H.
,
2001
, “
A Non-Conventional Robust Pi-Controller for the Smith Predictor
,”
Proceedings of the 40th IEEE Conference on Decision and Control
, Vol.
3
, pp.
2259
2260
.
You do not currently have access to this content.