This paper deals with nonlinear-parametric frequency response of alternating current (AC) near natural frequency electrostatically actuated microelectromechanical systems (MEMS) cantilever resonators. The model includes fringe and Casimir effects, and damping. Method of multiple scales (MMS) and reduced order model (ROM) method are used to investigate the case of weak nonlinearities. It is reported for uniform resonators: (1) an excellent agreement between the two methods for amplitudes less than half of the gap, (2) a significant influence of fringe effect and damping on bifurcation frequencies and phase–frequency response, respectively, (3) an increase of nonzero amplitudes' frequency range with voltage increase and damping decrease, and (4) a negligible Casimir effect at microscale.

References

References
1.
Tetin
,
S.
,
Caillar
,
B.
,
Menil
,
H. D.
,
Lucat
,
C.
,
Pellet
,
C.
, and
Dufour
,
I.
,
2010
, “
Modeling and Performance of Uncoated Microcantilever-Based Chemical Sensors
,”
Sens. Actuators, B
,
143
(2), pp.
555
560
.10.1016/j.snb.2009.09.062
2.
Ricciardi
,
C.
,
Canavese
,
G.
,
Castagna
,
R.
,
Ferrante
,
I.
,
Ricci
,
A.
,
Marasso
,
S. L.
,
Napione
,
L.
, and
Bussolino
,
F.
,
2010
, “
Integration of Microfluidic and Cantilever Technology for Biosensing Application in Liquid Environment
,”
Biosens. Bioelectron.
,
26
(
4
), pp.
1565
1570
.10.1016/j.bios.2010.07.114
3.
Bianco
,
S.
,
Cocuzza
,
M.
,
Ferrero
,
S.
,
Giuri
,
E.
,
Piacenza
,
G.
,
Pirri
,
C. F.
,
Ricci
,
A.
, and
Scaltrito
,
L.
,
2006
, “
Silicon Resonant Mirocatilevers for Absolute Pressure Measurement
,”
J. Vac. Sci. B
,
24
(
4
), pp.
1803
1809
.10.1116/1.2214698
4.
Joglekar
,
M. M.
, and
Pawaskar
,
D. N.
,
2011
, “
Estimation of Oscillation Period/Switching Time for Electrostatically Actuated Microbeam Type Switches
,”
Int. J. Mech. Sci.
,
53
(2), pp.
116
125
.10.1016/j.ijmecsci.2010.12.001
5.
Harb
,
A.
,
2010
, “
Energy Harvesting: State-of-the-Art
,”
Renewable Energy
,
36
(
10
), pp.
2641
2654
.10.1016/j.renene.2010.06.014
6.
Lamoreaux
,
S. K.
,
2005
, “
The Casimir Force: Background, Experiments, and Applications
,”
Rep. Prog. Phys.
,
68
(1), pp.
201
236
.10.1088/0034-4885/68/1/R04
7.
Okada
,
H.
,
Itoh
,
T.
, and
Suga
,
T.
,
2008
, “
Wafer Level Sealing Characterization Method Using Si Micro Cantilevers
,”
Sens. Actuators, A
,
147
(2), pp.
359
364
.10.1016/j.sna.2008.05.012
8.
Blom
,
F. R.
,
Bouwstra
,
S.
,
Elwenspoek
,
M.
, and
Fluitman
,
J. H. J.
,
1992
, “
Dependence of the Quality Factor Of Micromachined Silicon Beam Resonators on Pressure and Geometry
,”
J. Vac. Sci. Technol. B
,
10
(
1
), pp.
19
26
.10.1116/1.586300
9.
Jazar
,
R. N.
,
Mahinfalah
,
M.
,
Mahmoudian
,
N.
, and
Rastgaar
,
M. A.
,
2009
, “
Effects of Nonlinearities on the Steady State Dynamic Behavior of Electric Actuated Microcantilever-Based Resonators
,”
J. Vib. Control
,
15
(
9
), pp.
1283
1306
.10.1177/1077546307086443
10.
Palmer
,
H. B.
,
1937
, “
Capacitance of a Parallel-Plate Capacitor by the Schwartz–Christoffel Transformation
,”
Trans. Am. Inst. Electron. Eng.
,
56
(
3
), pp.
363
366
.10.1109/T-AIEE.1937.5057547
11.
Caruntu
,
D. I.
, and
Knecht
,
M. W.
,
2011
, “
On Nonlinear Response Near-Half Natural Frequency of Electrostatically Actuated Microresonators
,”
Int. J. Struct. Stability Dyn.
,
11
(
4
), pp.
641
672
.10.1142/S0219455411004282
12.
Krylov
,
S.
,
2008
, “
Parametric Excitation and Stabilization of Electrostatically Actuated Microstructures
,”
Int. J. Multiscale Comput. Eng.
,
6
(
6
), pp.
563
584
.10.1615/IntJMultCompEng.v6.i6.50
13.
Krylov
,
S.
,
Harari
,
I.
, and
Cohen
,
Y.
,
2005
, “
Stabilization of Electrostatically Actuated Microstructures Using Parametric Excitation
,”
J. Micromech. Microeng.
,
15
(6), pp.
1188
1204
.10.1088/0960-1317/15/6/009
14.
Nayfeh
,
A. H.
,
Younis
,
M. I.
, and
Abdel-Rahman
,
E. M.
,
2007
, “
Dynamic Pull-In Phenomenon in MEMS Resonantors
,”
Nonlinear Dyn.
,
48
(1–2), pp.
153
163
.10.1007/s11071-006-9079-z
15.
Sader
,
J. E.
,
1998
, “
Frequency Response of Cantilever Beams Immersed in Viscous Fluids With Applications to Atomic Force Microscope
,”
J. Appl. Phys.
,
84
(
1
), pp.
64
76
.10.1063/1.368002
16.
Green
,
C. P.
, and
Sader
,
J. E.
,
2005
, “
Small Amplitude Oscillations of a Thin Beam Immersed in a Viscous Fluid Near a Solid Surface
,”
Phys. Fluids
,
17
(
7
), pp.
1
12
.10.1063/1.1995467
17.
Van Eysden
,
C. A.
, and
Sader
,
J. E.
,
2006
, “
Small Amplitude Oscillation of a Flexible Thin Blade in a Viscous Fluid: Exact Analytical Solution
,”
Phys. Fluids
,
18
(
12
), p.
123102
.10.1063/1.2395967
18.
Van Eysden
,
C. A.
, and
Sader
,
J. E.
,
2007
, “
Frequency Response of Cantilever Beams Immersed in Viscous Fluids With Application to the Atomic Force Microscope: Arbitrary Mode Order
,”
J. Appl. Phys.
,
101
(
4
), p.
044908
.10.1063/1.2654274
19.
Brumley
,
D. R.
,
Willcox
,
M.
, and
Sader
,
J. E.
,
2010
, “
Oscillation of Cylinders of Rectangular Cross Section Immersed in Fluid
,”
Phys. Fluids
,
22
(
5
), pp.
1
15
10.1063/1.3397926.
20.
Sader
,
J. E.
,
Burg
,
T. P.
,
Lee
,
J.
, and
Manalis
,
S. R.
,
2011
, “
Energy Dissipation in Microfluidic Beam Resonators: Effect of Poisson's Ratio
,”
Phys. Rev. E
,
84
(
2
), p.
026304
.10.1103/PhysRevE.84.026304
21.
Sader
,
J. E.
,
Hughes
,
B. D.
,
Sanelli
,
J. A.
, and
Bieske
,
E. J.
,
2012
, “
Effect of Multiplicative Noise on Least-Squares Parameter Estimation With Application to the Atomic Force Microscope
,”
Rev. Sci. Instrum.
,
83
(
5
), p.
055106
.10.1063/1.4709496
22.
Prakash
,
G.
,
Raman
,
A.
,
Rhoads
,
J.
, and
Reifenberger
,
R. G.
,
2012
, “
Parametric Noise Squeezing and Parametric Resonance of Microcantilevers in Air and Liquid Environments
,”
Rev. Sci. Instrum.
,
83
(
6
), p.
065109
.10.1063/1.4721282
23.
Turner
,
K.
,
Miller
,
S.
,
Hartwell
,
P.
,
MacDonald
,
N.
,
Strogatz
,
S.
, and
Adams
,
S.
,
1998
, “
Five Parametric Resonances in a Microelectromechanical System
,”
Nature
,
396
(
1
), pp.
149
152
.10.1038/24122
24.
Nayfeh
,
A. H.
,
Younis
,
M. I.
, and
Abdel-Rahman
,
E. M.
,
2005
, “
Reduced-Order Models for MEMS Applications
,”
Nonlinear Dyn.
,
41
(1–3), pp.
211
236
.10.1007/s11071-005-2809-9
25.
Caruntu
,
D. I.
,
Martinez
,
I.
, and
Taylor
,
K. N.
,
2013
, “
Voltage-Amplitude Response of Alternating Current Near Half Natural Frequency Electrostatically Actuated MEMS Resonators
,”
Mech. Res. Commun.
,
52
(
1
), pp.
25
31
.10.1016/j.mechrescom.2013.06.001
26.
Caruntu
,
D. I.
,
Martinez
,
I.
, and
Knecht
,
M. W.
,
2013
, “
ROM Analysis of Frequency Response of AC Near Half Natural Frequency Electrostatically Actuated MEMS Cantilevers
,”
ASME J. Comput. Nonlinear Dyn.
,
8
(3), p.
031011
.10.1115/1.4023164
27.
Younis
,
M. I.
, and
Nayfeh
,
A. H.
,
2003
, “
A Study of the Nonlinear Response of a Resonant Microbeam to an Electric Actuation
,”
Nonlinear Dyn.
,
31
(1), pp.
91
117
.10.1023/A:1022103118330
28.
Timoshenko
,
S.
,
Young
,
D. H.
, and
Weaver
, Jr.,
W.
,
1974
,
Vibration Problems in Engineering
,
4th ed.
,
John Wiley & Sons
,
New York
.
29.
Caruntu
,
D. I.
,
2009
, “
Dynamic Modal Characteristics of Transverse Vibrations of Cantilevers of Parabolic Thickness
,”
Mech. Res. Commun.
,
33
(
3
), pp.
391
404
10.1016/j.mechrescom.2008.07.005.
30.
Caruntu
,
D. I.
,
2013
, “
Factorization of Self-Adjoint Ordinary Differential Equations
,”
J. Appl. Math. Comput.
,
219
(14), pp.
7622
7631
.10.1016/j.amc.2013.01.049
31.
Caruntu
,
D. I.
,
2013
, “
Eigenvalue Singular Problem of Factorized Fourth-Order Self-Adjoint Differential Equations
,”
J. Appl. Math. Comput.
,
224
(
1
), pp.
603
610
.10.1016/j.amc.2013.08.087
32.
Alsaleem
,
F. M.
,
Younis
,
M. I.
, and
Ouakad
,
H. M.
,
2009
, “
On the Nonlinear Resonances and Dynamic Pull-In of Electrostatically Actuated Resonators
,”
J. Micromech. Microeng.
,
19
(
4
), pp.
1
14
.10.1088/0960-1317/19/4/045013
33.
Younis
,
M. I.
,
Abdel-Rahman
,
E. M.
, and
Nayfeh
,
A.
,
2003
, “
A Reduced-Order Model for Electrically Actuated Microbeam-Based MEMS
,”
J. Microelectromech. Syst.
,
12
(
5
), pp.
672
680
.10.1109/JMEMS.2003.818069
34.
Strogatz
,
S. H.
,
1994
,
Nonlinear Dynamics and Chaos
,
Perseus Books Publishing, LLC
,
Cambridge, MA
.
35.
Ramezani
,
A.
,
Alasty
,
A.
, and
Akbari
,
J.
,
2008
, “
Analytical Investigation and Numerical Verification of Casimir Effect on Electrostatic Nano-Cantilevers
,”
Microsyst. Technol.
,
14
(2), pp.
145
157
.10.1007/s00542-007-0409-y
36.
Zhu
,
J.
,
Ru
,
C. Q.
, and
Mioduchowski
,
A.
,
2007
, “
High-Order Subharmonic Parametric Resonance of Nonlinearly Coupled Micromechanical Oscillators
,”
Eur. Phys. J. B
,
58
(4), pp.
411
421
.10.1140/epjb/e2007-00250-0
37.
Nayfeh
,
A. H.
,
2004
,
Nonlinear Oscillations
,
Wiley-VCH Verlag GMBH & Co
,
KGaA, Weinheim
.
38.
Batra
,
R. C.
,
Porfiri
,
M.
, and
Spinello
,
D.
,
2006
, “
Electromechanical Model of Electrically Actuated Narrow Beams
,”
J. Microelectromech. Syst.
,
15
(5), pp.
1175
1189
.10.1109/JMEMS.2006.880204
39.
Askari
,
A. R.
, and
Tahani
,
M.
,
2014
, “
An Alternative Reduced Order Model for Electrically Actuated Micro-Beams Under Mechanical Shock
,”
Mech. Res. Commun.
,
57
(
1
), pp.
34
39
.10.1016/j.mechrescom.2014.02.002
40.
Gutschmidt
,
S.
, and
Gottlieb
,
O.
,
2012
, “
Nonlinear Dynamic Behavior of a Microbeam Array Subject to Parametric Actuation at Low, Medium and Large DC-Voltages
,”
Nonlinear Dyn.
,
67
(1), pp.
1
36
.10.1007/s11071-010-9888-y
41.
Ouakad
,
H. M.
, and
Younis
,
M. I.
,
2010
, “
The Dynamic Behavior of MEMS Arch Resonators Actuated Electrically
,”
Int. J. Non-Linear Mech.
,
45
(7), pp.
704
713
.10.1016/j.ijnonlinmec.2010.04.005
42.
Younis
,
M. I.
, and
Alsaleem
,
F.
,
2009
, “
Exploration of New Concepts for Mass Detection in Electrostatically-Actuated Structures Based on Nonlinear Phenomena
,”
ASME J. Comput. Nonlinear Dyn.
,
4
(2), p.
021010
.10.1115/1.3079785
43.
Napoli
,
M.
,
Baskaran
,
R.
,
Turner
,
K.
, and
Bamieh
,
B.
,
2003
, “
Understanding Mechanical Domain Parametric Resonance in Microcantilevers
,” Proceedings of
IEEE
MicroElectro Mechanical Systems (MEMS)
, Kyoto, Japan, Jan. 19–23, pp.
169
172
10.1109/MEMSYS.2003.1189713.
44.
Caruntu
,
D. I.
, and
Knecht
,
M.
,
2010
, “
On Electrostatically Actuated Microsenors
,”
Proc. SPIE
,
7647
(
1
), p.
764713
.10.1117/12.854961
45.
Caruntu
,
D. I.
, and
Martinez
,
I.
,
2014
, “
Reduced Order Model of Parametric Resonance of Electrostatically Actuated MEMS Cantilever Resonators
,”
Int. J. Non-Linear Mech.
,
66
(
1
), pp.
28
32
.10.1016/j.ijnonlinmec.2014.02.007
46.
Caruntu
,
D. I.
, and
Luo
,
L.
,
2014
, “
Frequency Response of Primary Resonance of Electrostatically Actuated CNT Cantilevers
,”
Nonlinear Dyn.
,
78
(
1
), pp.
1827
1837
.10.1007/s11071-014-1537-4
You do not currently have access to this content.