This paper deals with the direct solution of the pole placement problem for single-input linear systems using proportional-derivative (PD) state feedback. This problem is always solvable for any controllable system. The explicit parametric expressions for the feedback gain controllers are derived which describe the available degrees of freedom offered by PD state feedback. These freedoms are utilized to obtain closed-loop systems with small gains. Its derivation is based on the transformation of linear system into control canonical form by a special coordinate transformation. The solving procedure results into a formula similar to Ackermann’s one. In the present work, both time-invariant and time-varying linear systems are treated. The effectiveness of the proposed method is demonstrated by the simulation examples of both time-invariant and time-varying systems.

References

References
1.
Ackermann
,
J.
,
1972
, “
Der Entwurf linearer Regelungsysteme im Zustandraum
,”
Regelungstech. Tech. Proz.-Datenverarb
,
20
(7), pp.
297
300
.
2.
Miminis
,
G. S.
, and
Paige
,
C. C.
,
1982
, “
An Algorithm for Pole Assignment of Time-Invariant Linear System
,”
Int. J. Control
,
35
(2), pp.
341
354
.10.1080/00207178208922623
3.
Petkov
,
P. Hr.
,
Christov
,
N. D.
, and
Konstantinov
,
M. M.
,
1984
, “
A Computational Algorithm for Pole Assignment of Linear Single-Input Systems
,”
IEEE Trans. Autom. Control
,
29
(
11
), pp.
1045
1048
.10.1109/TAC.1984.1103430
4.
Varga
,
A.
,
2000
, “
Robust and Minimum Norm Pole Assignment With Periodic State Feedback
,”
IEEE Trans. Autom. Control
,
45
(
5
), pp.
1017
1022
.10.1109/9.855576
5.
Valášek
,
M.
, and
Olgac
,
N.
,
1995
, “
Efficient Pole Placement Technique for Linear Time-Variant SISO Systems
,”
IEE Proc. Control Theory Appl.
,
142
(
5
), pp.
451
458
.10.1049/ip-cta:19951959
6.
Valášek
,
M.
, and
Olgac
,
N.
,
1995
, “
Efficient Eigenvalue Assignments for General Linear MIMO Systems
,”
Automatica
,
31
(
11
), pp.
1605
1617
.10.1016/0005-1098(95)00091-A
7.
Nguyen
,
C. C.
,
1987
, “
Arbitrary Eigenvalue Assignments for Linear Time-Varying Multivariable Control Systems
,”
Int. J. Control
,
45
(
3
), pp.
1051
1057
.10.1080/00207178708933787
8.
Mutoh
,
Y.
,
2011
, “
A New Design Procedure of the Pole-Placement and the State Observer for Linear Time-Varying Discrete Systems
,”
Informatics in Control, Automation and Robotics
(Lecture Notes in Electrical Engineering, Vol. 89),
Springer
,
Berlin
, Germany, pp.
321
333
.10.1007/978-3-642-19539-6_21
9.
Nguyen
,
C. C.
,
1986
, “
Canonical Transformation for a Class of Time-Varying Multivariable Systems
,”
Int. J. Control
,
43
(
4
), pp.
1061
1074
.10.1080/00207178608933523
10.
O'Brien
,
R. T.
, Jr.
, and
Iglesias
,
P. A.
,
2001
, “
On the Poles and Zeros of Linear, Time-Varying Systems
,”
IEEE Trans. Circuits Syst. I: Fundam. Theory Appl.
,
48
(
5
), pp.
565
577
.10.1109/81.922459
11.
Abdelaziz
,
T. H. S.
, and
Valášek
,
M.
,
2004
, “
Pole-Placement for SISO Linear Systems by State-Derivative Feedback
,”
IEE Proc. Control Theory Appl.
,
151
(
4
), pp.
377
385
.10.1049/ip-cta:20040660
12.
Abdelaziz
,
T. H. S.
, and
Valášek
,
M.
,
2005
, “
Direct Algorithm for Pole Placement by State-Derivative Feedback for Multi-Input Linear Systems—Nonsingular Case
,”
Kybernetika
,
41
(
5
), pp.
637
660
.
13.
Sujitjorn
,
S.
, and
Wiboonjaroen
,
W.
,
2011
, “
State-PID Feedback for Pole Placement of LTI Systems
,”
Math. Prob. Eng.
, p.
20
.10.1155/2011/929430
14.
Guo
,
G.
,
Ma
,
Z.
, and
Qiao
,
J.
,
2006
, “
State-PID Feedback Control With Application to a Robot Vibration Absorber
,”
Int. J. Modell., Identif. Control
,
1
, pp.
38
43
.10.1504/IJMIC.2006.008646
15.
Ang
,
K. H.
,
Chong
,
G.
, and
Li
,
Y.
,
2005
, “
PID Control System Analysis, Design, and Technology
,”
IEEE Trans. Control Syst. Technol.
,
13
(
4
), pp.
559
579
.10.1109/TCST.2005.847331
16.
Haraldsdottir
,
A.
,
Kabamba
,
P. T.
, and
Ulsoy
,
A. G.
,
1990
, “
Control of Linear Systems by Output Proportional Plus Derivative Feedback
,”
ASME J. Dyn. Syst. Meas. Contr.
,
112
(
1
), pp.
27
34
.10.1115/1.2894135
17.
Fey
,
R. H. B.
,
Wouters
,
R. M. T.
, and
Nijmeijer
,
H.
,
2010
, “
Proportional and Derivative Control for Steady-State Vibration Mitigation in a Piecewise Linear Beam System
,”
Nonlinear Dyn.
,
60
(
4
), pp.
535
549
.10.1007/s11071-009-9613-x
18.
Hu
,
Q.
, and
Xiao
,
B.
,
2012
, “
Intelligent Proportional-Derivative Control for Flexible Spacecraft Attitude Stabilization With Unknown Input Saturation
,”
Aerosp. Sci. Technol.
,
23
(
1
), pp.
63
74
.10.1016/j.ast.2011.06.003
19.
Huey
,
J. R.
, and
Singhose
,
W.
,
2012
, “
Design of Proportional-Derivative Feedback and Input Shaping for Control of Inertia Plants
,”
IET Control Theory Appl.
,
6
(
3
), pp.
357
364
.10.1049/iet-cta.2010.0456
20.
Owens
,
T. J.
, and
Askarpour
,
S.
,
2000
, “
Integrated Approach to Eigenstructure Assignment in Descriptor Systems by PD and P State Feedback
,”
IEE Proc. Control Theory Appl.
,
147
(
4
), pp.
407
415
.10.1049/ip-cta:20000117
21.
Ren
,
J.
, and
Zhang
,
Q.
,
2013
, “
Positive Real Control for Descriptor Systems With Uncertainties in the Derivative Matrix Via a Proportional Plus Derivative Feedback
,”
Int. J. Syst. Sci.
,
44
(
3
), pp.
450
460
.10.1080/00207721.2011.602481
22.
Chu
,
D.
, and
Malabre
,
M.
,
2002
, “
Numerically Reliable Design for Proportional and Derivative State-Feedback Decoupling Controller
,”
Automatica
,
38
(
12
), pp.
2121
2125
.10.1016/S0005-1098(02)00138-3
23.
Vyhlıdal
,
T.
,
Michiels
,
W.
,
Zitek
,
P.
, and
McGahan
,
P.
,
2009
, “
Stability Impact of Small Delays in Proportional-Derivative State Feedback
,”
Control Eng. Pract.
,
17
(3), pp.
382
393
.10.1016/j.conengprac.2008.09.001
24.
Tan
,
N.
, and
Atherton
,
D. P.
,
2006
, “
Design of Stabilizing PI and PID Controllers
,”
Int. J. Syst. Sci.
,
37
(
8
), pp.
543
554
.10.1080/00207720600783785
25.
Bettayeb
,
M.
,
Boussalem
,
C.
,
Mansouri
,
R.
, and
Al-Saggaf
,
U. M.
,
2014
, “
Stabilization of an Inverted Pendulum-Cart System by Fractional PI-State Feedback
,”
ISA Trans.
,
53
(
2
), pp.
508
516
.10.1016/j.isatra.2013.11.014
26.
Abdelaziz
,
T. H. S.
,
2007
, “
Pole Assignment by State-Derivative Feedback for Single-Input Linear Systems
,”
J. Syst. Control Eng.
,
221
(
7
), pp.
991
1000
.10.1243/09596518JSCE409
27.
Abdelaziz
,
T. H. S.
,
2009
, “
Robust Pole Assignment for Linear Time-Invariant Systems Using State-Derivative Feedback
,”
J. Syst. Control Eng.
,
223
(
3
), pp.
187
199
.10.1243/09596518JSCE632
28.
Abdelaziz
,
T. H. S.
,
2010
, “
Optimal Control Using Derivative Feedback for Linear Systems
,”
J. Syst. Control Eng.
,
224
(
2
), pp.
185
202
.10.1243/09596518JSCE886
29.
Abdelaziz
,
T. H. S.
,
2012
, “
Parametric Eigenstructure Assignment Using State-Derivative Feedback for Linear Systems
,”
J. Vib. Control
,
18
(
12
), pp.
1809
1827
.10.1177/1077546311423549
30.
Fallah
,
S.
,
Khajepour
,
A.
,
Fidan
,
B.
,
Chen
,
S.-K.
, and
Litkouhi
,
B.
,
2013
, “
Vehicle Optimal Torque Vectoring Using State-Derivative Feedback and Linear Matrix Inequality
,”
IEEE Trans. Veh. Technol.
,
62
(
4
), pp.
1540
1552
.10.1109/TVT.2012.2232947
31.
Kuo
,
B. C.
,
1980
,
Digital Control Systems
,
Holt, Rinehart and Winston
,
New York
.
32.
Rugh
,
W. J.
,
1993
,
Linear System Theory
,
2nd ed.
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
You do not currently have access to this content.