While time delays typically lead to poor control performance, and even instability, previous research shows that time delays can, in some cases, be beneficial. This paper presents a new benefit of time-delayed control (TDC) for single-input single-output (SISO) linear time invariant (LTI) systems: it can be used to improve robustness. Time delays can be used to approximate state derivative feedback (SSD), which together with state feedback (SF) can reduce sensitivity and improve stability margins. Additional sensors are not required since the state derivatives are approximated using available measurements and time delays. A systematic design approach, based on solution of delay differential equations (DDEs) using the Lambert W method, is presented using a scalar example. The method is then applied to both single- and two-degree of freedom (DOF) mechanical systems. The simulation results demonstrate excellent performance with improved stability margins.

References

References
1.
Stepan
,
G.
,
1989
,
Retarded Dynamical Systems: Stability and Characteristic Functions
,
Longman Scientific & Technical
, Harlow, UK.
2.
Kolmanovskii
,
V. B.
, and
Myshkis
,
A.
,
1999
,
Introduction to the Theory and Applications of Functional Differential Equations
,
Kluwer Academic Publishers, Dordrecht, The Netherlands
.10.1007/978-3-642-18482-6
3.
Niculescu
,
S. I.
, and
Gu
,
K.
,
2004
,
Advances in Time-Delay Systems
,
Springer
Berlin, Heidelberg, Germany.10.1007/978-3-642-18482-6
4.
Yi
,
S.
,
Nelson
,
P. W.
, and
Ulsoy
,
A. G.
,
2010
,
Time Delay Systems: Analysis and Control Using the Lambert W Function
,
World Scientific
, Singapore.10.1142/7759
5.
Doyle
,
J. C.
,
Glover
,
K.
,
Khargonekar
,
P. P.
, and
Francis
,
B. A.
,
1989
, “
State-Space Solutions to Standard H2 and H ∞ Control Problems
,”
IEEE Trans. Autom. Control
,
34
(
8
), pp.
831
847
.10.1109/9.29425
6.
Skogestad
,
S.
, and
Postlethwaite
,
I.
,
2005
,
Multivariable Feedback Control–Analysis and Design
,
Wiley
, Chichester, UK.
7.
Balas
,
G.
,
Chiang
,
R.
,
Packard
,
A.
, and
Safonov
,
M. G.
,
2007
,
Robust Control Toolbox 3: User's Guide
,
Mathworks
, Natick, MA.
8.
Haraldsdottir
,
A.
,
Kabamba
,
P. T.
, and
Ulsoy
,
A. G.
,
1988
, “
Sensitivity Reduction by State Derivative Feedback
,”
ASME J. Dyn. Syst. Meas. Contr.
,
110
(
1
), pp.
84
93
.10.1115/1.3152655
9.
Lian
,
F. L.
,
Moyne
,
J.
, and
Tilbury
,
D. M.
,
2002
, “
Network Design Consideration for Distributed Control Systems
,”
IEEE Trans. Control Syst. Technol.
,
10
(
2
), pp.
297
307
.10.1109/87.987076
10.
Lian
,
F. L.
,
Moyne
,
J.
, and
Tilbury
,
D. M.
,
2010
, “
Modeling and Optimal Controller Design of Networked Control Systems With Multiple Delays
,”
Int. J. Control
,
76
(
6
), pp.
591
606
.10.1080/0020717031000098426
11.
Yi
,
S.
,
Nelson
,
P. W.
, and
Ulsoy
,
A. G.
,
2010
, “
Design of Observer-Based Feedback Control for Time-Delay Systems With Application to Automotive Powertrain Control
,”
J. Franklin Inst.
,
347
(
1
), pp.
358
376
.10.1016/j.jfranklin.2009.09.001
12.
Ulsoy
,
A. G.
,
Peng
,
H.
, and
Çakmakcı
,
M.
,
2012
,
Automotive Control Systems
,
Cambridge University
, Cambridge, UK.10.1017/CBO9780511844577
13.
Anderson
,
R. J.
, and
Spong
,
M. W.
,
1989
, “
Bilateral Control Of Teleoperators With Time Delay
,”
IEEE Trans. Autom. Control
,
34
(
5
), pp.
494
501
.10.1109/9.24201
14.
Yang
,
B.
, and
Mote
,
C. D.
, Jr.
,
1990
, “
Vibration Control of Band Saws: Theory and Experiment
,”
Wood Sci. Technol.
,
24
(
4
), pp.
355
373
.10.1007/BF00227056
15.
Yang
,
B.
, and
Mote
,
C. D.
, Jr.
,
1992
, “
On Time Delay in Noncolocated Control of Flexible Mechanical Systems
,”
ASME J. Dyn. Syst. Meas. Contr.
,
114
(
3
), pp.
409
415
.10.1115/1.2897362
16.
Udwadia
,
F. E.
,
von Bremen
,
H. F.
,
Kumar
,
R.
, and
Hosseini
,
M.
,
2003
, “
Time Delayed Control of Structural Systems
,”
Earthquake Eng. Struct. Dyn.
,
32
(
4
), pp.
495
535
.10.1002/eqe.228
17.
Udwadia
,
F. E.
, and
Phohomsiri
,
P.
,
2006
, “
Active Control of Structures Using Time Delayed Positive Feedback Proportional Control Designs
,”
Struct. Control Health Monit.
,
13
(
1
), pp.
536
552
.10.1002/stc.128
18.
Udwadia
,
F. E.
,
von Bremen
,
H.
, and
Phohomsiri
,
P.
,
2007
, “
Time-Delayed Control Design for Active Control of Structures: Principles and Applications
,”
Struct. Control Health Monit.
,
14
, pp.
27
61
.10.1002/stc.82
19.
Youcef-Toumi
,
K.
, and
Ito
,
O.
,
1990
, “
A Time Delay Controller for Systems With Unknown Dynamics
,”
ASME J. Dyn. Syst. Meas. Contr.
,
112
(
1
), pp.
133
142
.10.1115/1.2894130
20.
Youcef-Toumi
,
K.
, and
Reddy
,
S.
,
1992
, “
Analysis of Linear Time Invariant Systems With Time Delay
,”
ASME J. Dyn. Syst. Meas. Contr.
,
114
(
4
), pp.
544
555
.10.1115/1.2897722
21.
Renzulli
,
M. E.
,
Ghosh-Roy
,
R.
, and
Olgac
,
N.
,
1999
, “
Robust Control of the Delayed Resonator Vibration Absorber
,”
IEEE Trans. Control Syst. Technol.
,
7
(
6
), pp.
683
691
.10.1109/87.799669
22.
Elmali
,
H.
,
Renzulli
,
M.
, and
Olgac
,
N.
,
2000
, “
Experimental Comparison of Delayed Resonator and PD Controlled Vibration Absorbers Using Electromagnetic Actuators
,”
ASME J. Dyn. Syst. Meas. Control
,
122
(
3
), pp.
514
520
.10.1115/1.1286820
23.
Hosek
,
M.
, and
Olgac
,
N.
,
2002
, “
A Single-Step Automatic Tuning Algorithm for the Delayed Resonator Vibration Absorber
,”
IEEE/ASME Trans. Mechatron.
,
7
(
2
), pp.
245
255
.10.1109/TMECH.2002.1011261
24.
Kokame
,
H.
,
Hirata
,
K.
,
Konishi
,
K.
, and
Mori
,
T.
,
2001
, “
Difference Feedback Can Stabilize Uncertain Steady States
,”
IEEE Trans. Autom. Control
,
46
(
12
), pp.
1908
1913
.10.1109/9.975474
25.
Villafuerte
,
R.
,
Mondie
,
S.
, and
Garrido
,
R.
,
2013
, “
Tuning of Proportional Retarded Controllers: Theory and Experiments
,”
IEEE Trans. Control Syst. Technol.
,
21
(
3
), pp.
983
990
.10.1109/TCST.2012.2195664
26.
Ramirez
,
A.
,
Mondie
,
S.
, and
Garrido
,
R.
,
2013
, “
Proportional Integral Retarded Control of Second Order Linear Systems
,”
Proceedings of the IEEE Conference on Decision and Control
, Firenze, Italy, Dec. 10–13, pp.
2239
2244
.
27.
Lavaei
,
J.
,
Sojoudi
,
S.
, and
Murray
,
R. M.
,
2010
, “
Delay-Based Controller Design for Continuous-Time and Hybrid Applications
,” http://resolver.caltech.edu/CaltechCDSTR:2010.002
28.
Kwon
,
W. H.
,
Lee
,
G. W.
, and
Kim
,
S. W.
,
1989
, “
Delayed State Feedback Controller for the Stabilization of Ordinary Systems
,”
Proceedings of the American Control Conference
, Pittsburgh, PA, June 21–23, pp.
292
297
.
29.
Diop
,
S.
,
Kolmanovsky
,
I.
,
Moraal
,
P. E.
, and
van Nieuwstadt
,
M.
,
2001
, “
Preserving Stability/Performance When Facing an Unknown Time-Delay
,”
Control Eng. Pract.
,
9
(
12
), pp.
1319
1325
.10.1016/S0967-0661(01)00078-8
30.
Krstic
,
M.
,
2009
, Delay Compensation for Nonlinear, Adaptive and PDE Systems (Systems and Control: Foundations and Applications), Birkhauser Science.
31.
Haraldsdottir
,
A.
,
Kabamba
,
P. T.
, and
Ulsoy
,
A. G.
,
1990
, “
Control of Linear Systems by Output Proportional Plus Derivative Feedback
,”
ASME J. Dyn. Syst. Meas. Contr.
,
112
(
1
), pp.
27
34
.10.1115/1.2894135
32.
Michiels
,
W.
,
Vyhlidal
,
T.
,
Huijberts
,
H.
, and
Nijmeijer
,
H.
,
2009
, “
Stabilizability and Stability Robustness of State Derivative Feedback Controllers
,”
SIAM J. Control Optim.
,
47
(
6
), pp.
3100
3117
.10.1137/070697136
33.
Vyhlidal
,
T.
,
Michiels
,
W.
,
Zitek
,
P.
, and
McGahan
,
P.
,
2009
, “
Stability Impact of Small Delays in Proportional-Derivative State Feedback
,”
Control Eng. Pract.
,
17
(
3
), pp.
382
393
.10.1016/j.conengprac.2008.09.001
34.
Ulsoy
,
A. G.
,
2013
, “
Improving Stability Margins via Time Delay Control
,” ASME IDETC, Portland, OR, Aug. 4–7,
ASME
Paper No. DETC2013-12076. 10.1115/DETC2013-12076
35.
Breda
,
D.
,
Maset
,
S.
, and
Vermiglio
,
R.
,
2009
, “
TRACE-DDE: A Tool for Robust Analysis and Characteristic Equations for Delay Differential Equations
,” Topics in Time Delay Systems,
J. J.
Loiseau
,
W.
Michiels
,
S.
Niculescu
, and
R.
Sipahi
, eds.,
Springer
, pp.
145
155
.10.1007/978-3-642-02897-7_13
36.
Anderson
,
B. D. O.
, and
Moore
,
J. B.
,
1990
,
Optimal Control: Linear Quadratic Methods
,
Prentice-Hall
, Upper Saddle River, NJ.
37.
Safonov
,
M. G.
,
1980
,
Stability and Robustness of Multivariable Feedback Systems
,
MIT
, Cambridge, MA.
38.
Yi
,
S.
,
Nelson
,
P. W.
, and
Ulsoy
,
A. G.
,
2010
, “
Robust Control and Time-Domain Specifications for Systems of Delay Differential Equations via Eigenvalue Assignment
,”
ASME J. Dyn. Syst. Meas. Control
,
132
(
3
), pp.
031003-1
031003-7
.10.1115/1.4001339
39.
Yi
,
S.
,
Duan
,
S.
,
Nelson
,
P. W.
, and
Ulsoy
,
A. G.
,
2014
, “
Analysis and Control of Time Delay Systems Using the LambertWDDE Toolbox
,” Delay Systems: From Theory to Numerics and Applications (Advances Delays and Dynamics),
T.
Vyhlidal
,
J. F.
Lafay
, and
R.
Sipahi
, eds.,
Springer
, Heidelberg, Germany, Vol.
1
, pp.
271
284
.10.1007/978-3-319-01695-5_20
40.
Franklin
,
G. F.
,
Powell
,
J. D.
, and
Emami-Naeini
,
A.
,
2010
,
Feedback Control of Dynamic Systems
,
Pearson Prentice-Hall
, Upper Saddle River, NJ.
41.
Bergmans
,
J. W. M.
,
2005
, “
Effect of Loop Delay on Phase Margin of First-Order and Second-Order Control Loops
,”
IEEE Trans. Circuits Syst.
,
52
(
10
), pp.
621
625
.10.1109/TCSII.2005.852003
42.
Lee
,
T.
,
Watkins
,
J. M.
, and
Emami
,
T.
,
2007
, “
A Unified Approach for Stabilization of Arbitrary Order Continuous-Time and Discrete-Time Transfer Functions With Delay
,”
Proceedings of the IEEE Conference on Decision and Control
, New Orleans, LA, Dec. 12–14, pp.
2100
2105
.
43.
Wie
,
B.
, and
Bernstein
,
D. S.
,
1992
, “
Benchmark Problem for Robust Control Design (1992 ACC Version)
,”
Proceedings of the American Control Conference
, Chicago, IL, June 24–26, pp.
2047
2048
.
You do not currently have access to this content.