The consideration of nonsmooth Lyapunov functions for proving stability of feedback discontinuous systems is an important extension to classical stability theory since there exist nonsmooth dynamical systems whose equilibria cannot be proved to be stable using standard continuously differentiable Lyapunov function theory. For dynamical systems with continuously differentiable flows, the concept of smooth control Lyapunov functions was developed by Artstein to show the existence of a feedback stabilizing controller. A constructive feedback control law based on a universal construction of smooth control Lyapunov functions was given by Sontag. Even though a stabilizing continuous feedback controller guarantees the existence of a smooth control Lyapunov function, many systems that possess smooth control Lyapunov functions do not necessarily admit a continuous stabilizing feedback controller. However, the existence of a control Lyapunov function allows for the design of a stabilizing feedback controller that admits Filippov and Krasovskii closed-loop system solutions. In this paper, we develop a constructive feedback control law for discontinuous dynamical systems based on the existence of a nonsmooth control Lyapunov function defined in the sense of generalized Clarke gradients and set-valued Lie derivatives.

References

References
1.
Brogliato
,
B.
,
1999
,
Nonsmooth Mechanics
,
2nd ed.
,
Springer
,
Berlin, Germany
.
2.
Pfeiffer
,
F.
, and
Glocker
,
C.
,
1996
,
Multibody Dynamics With Unilateral Contacts
,
Wiley
,
NY
.
3.
Pereira
,
G. A. S.
,
Campos
,
M. F. M.
, and
Kumar
,
V.
,
2004
, “
Decentralized Algorithms for Multi-Robot Manipulation Via Caging
,”
Int. J. Rob. Res.
,
23
(7,8), pp.
783
795
.10.1177/0278364904045477
4.
Olfati-Saber
,
R.
, and
Murray
,
R. M.
,
2004
, “
Consensus Problems in Networks of Agents With Switching Topology and Time-Delays
,”
IEEE Trans. Autom. Control
,
49
(
9
), pp.
1520
1533
.10.1109/TAC.2004.834113
5.
Cortes
,
J.
,
2008
, “
Discontinuous Dynamical Systems: A Tutorial on Solutions, Nonsmooth Analysis, and Stability
,”
IEEE Control Syst. Mag.
,
28
(
3
), pp.
36
73
.10.1109/MCS.2008.919306
6.
Shevitz
,
D.
, and
Paden
,
B.
,
1994
, “
Lyapunov Stability Theory of Nonsmooth Systems
,”
IEEE Trans. Autom. Control
,
39
(
9
), pp.
1910
1914
.10.1109/9.317122
7.
Artstein
,
Z.
,
1983
, “
Stabilization With Relaxed Controls
,”
Nonlinear Anal. Theory Methods Appl.
,
7
(
11
), pp.
1163
1173
.10.1016/0362-546X(83)90049-4
8.
Sontag
,
E. D.
,
1989
, “
A ‘Universal’ Construction of Artstein's Theorem on Nonlinear Stabilization
,”
Syst. Control Lett.
,
13
(
2
), pp.
117
123
.10.1016/0167-6911(89)90028-5
9.
Rifford
,
L.
,
2001
, “
On the Existence of Nonsmooth Control-Lyapunov Functions in the Sense of Generalized Gradients
,”
ESAIM Control Optim. Calculus Variations
,
6
, pp.
593
611
.10.1051/cocv:2001124
10.
Rifford
,
L.
,
2002
, “
Semiconcave Control-Lyapunov Functions and Stabilizing Feedbacks
,”
SIAM J. Control Optim.
,
41
(
3
), pp.
659
681
.10.1137/S0363012900375342
11.
Hirschorn
,
R.
,
2008
, “
Lower Bounded Control-Lyapunov Functions
,”
Commun. Inf. Syst.
,
8
(
4
), pp.
399
412
.
12.
Rifford
,
L.
,
2000
, “
Existence of Lipschitz and Semiconcave Control-Lyapunov Functions
,”
SIAM J. Control Optim.
,
39
(
4
), pp.
1043
1064
.10.1137/S0363012999356039
13.
Clarke
,
F. H.
,
1983
,
Optimization and Nonsmooth Analysis
,
Wiley
,
NY
.
14.
Bacciotti
,
A.
, and
Ceragioli
,
F.
,
1999
, “
Stability and Stabilization of Discontinuous Systems and Nonsmooth Lyapunov Functions
,”
ESAIM Control Optim. Calculus Variations
,
4
, pp.
361
376
.10.1051/cocv:1999113
15.
Filippov
,
A. F.
,
1988
,
Differential Equations With Discontinuous Right-Hand Sides
,
Kluwer, Dordrecht
,
The Netherlands
.
16.
Aubin
,
J. P.
, and
Cellina
,
A.
,
1984
,
Differential Inclusions
,
Springer
,
Berlin, Germany
.
17.
Teel
,
A.
,
Panteley
,
E.
, and
Loria
,
A.
,
2002
, “
Integral Characterization of Uniform Asymptotic and Exponential Stability With Applications
,”
Math. Control Signal Syst.
,
15
, pp.
177
201
.10.1007/s004980200007
18.
Evans
,
L. C.
,
2002
,
Partial Differential Equations
,
American Mathematical Society
,
Providence, RI
.
19.
Cortés
,
J.
, and
Bullo
,
F.
,
2005
, “
Coordination and Geometric Optimization Via Distributed Dynamical Systems
,”
SIAM J. Control Optim.
,
44
(
5
), pp.
1543
1574
.10.1137/S0363012903428652
20.
Haddad
,
W. M.
, and
Chellaboina
,
V.
,
2008
,
Nonlinear Dynamical Systems and Control: A Lyapunov-Based Approach
,
Princeton University Press
,
Princeton, NJ
.
21.
Hui
,
Q.
,
Haddad
,
W. M.
, and
Bhat
,
S. P.
,
2009
, “
Semistability, Finite-Time Stability, Differential Inclusions, and Discontinuous Dynamical Systems Having a Continuum of Equilibria
,”
IEEE Trans. Autom. Control
,
54
(
10
), pp.
2465
2470
.10.1109/TAC.2009.2029397
22.
Paden
,
B. E.
, and
Sastry
,
S. S.
,
1987
, “
A Calculus for Computing Filippov's Differential Inclusion With Application to the Variable Structure Control of Robot Manipulators
,”
IEEE Trans. Circuit Syst.
,
34
(
1
), pp.
73
82
.10.1109/TCS.1987.1086038
You do not currently have access to this content.