High accuracy tracking control of direct current (DC) motors is concerned in this paper. A continuously differentiable friction model is adopted to account for the friction nonlinearities, which allows more flexible and suitable practical implementation. Since only output signal is available for measurement, an extended state observer (ESO) is designed to provide precise estimates of the unmeasurable state together with external disturbances, which facilitates the controller design without any transformations. The global stability of the controller is ensured via a certain robust feedback law. The resulting controller theoretically guarantees a prescribed tracking performance in general, while achieving asymptotic output tracking in the absence of time-varying disturbances, which is very important for high accuracy control of motion systems. Comparative experimental results are obtained to verify the high-performance nature of the proposed control strategy.

References

References
1.
Tao
,
G.
, and
Lewis
,
F. L.
,
2001
,
Adaptive Control of Nonsmooth Dynamic Systems
,
Springer-Verlag
,
New York
.
2.
Chen
,
Z.
,
Yao
,
B.
, and
Wang
,
Q.
,
2013
, “
Adaptive Robust Precision Motion Control of Linear Motors with Integrated Compensation of Nonlinearities and Bearing Flexible Modes
,”
IEEE Trans. Ind. Inf.
,
9
(
2
), pp.
965
973
.10.1109/TII.2012.2225439
3.
Yao
,
J.
,
Yang
,
G.
,
Jiao
,
Z.
, and
Ma
,
D.
,
2013
, “
Adaptive Robust Motion Control of Direct-Drive DC Motors With Continuous Friction Compensation
,”
Abstr. Appl. Anal.
,
2013
, p.
837548
.10.1155/2013/837548
4.
Bittencourt
,
A. C.
, and
Gunnarsson
,
S.
,
2012
, “
Static Friction in a Robot Joint-Modeling and Identification of Load and Temperature Effects
,”
ASME J. Dyn. Syst. Meas. Control
,
134
(
5
), p.
051013
.10.1115/1.4006589
5.
Ruderman
,
M.
,
Ruderman
,
A.
, and
Bertram
,
T.
,
2013
, “
Observer-Based Compensation of Additive Periodic Torque Disturbances in Permanent Magnet Motors
,”
IEEE Trans. Ind. Inf.
,
9
(
2
), pp.
1130
1138
.10.1109/TII.2012.2222040
6.
Eun
,
Y.
,
Gross
,
E. M.
,
Kabamba
,
P. T.
,
Meerkov
,
S. M.
,
Menezes
,
A. A.
, and
Ossareh
,
H. R.
,
2013
, “
Cyclic Control: Reference Tracking and Disturbance Rejection
,”
IEEE Trans. Control Syst. Technol.
,
21
(
3
), pp.
753
764
.10.1109/TCST.2012.2193400
7.
Liu
,
G.
,
Chen
,
L.
,
Zhao
,
W.
,
Jiang
,
Y.
, and
Qu
,
L.
,
2013
, “
Internal Model Control of Permanent Magnet Synchronous Motor Using Support Vector Machine Generalized Inverse
,”
IEEE Trans. Ind. Inf.
,
9
(
2
), pp.
890
898
.10.1109/TII.2012.2222652
8.
Grabner
,
H.
,
Amrhein
,
W.
,
Silber
,
S.
, and
Gruber
,
W.
,
2010
, “
Nonlinear Feedback Control of a Bearingless Brushless DC Motor
,”
IEEE/ASME Trans. Mechatron.
,
15
(
1
), pp.
40
47
.10.1109/TMECH.2009.2014058
9.
Sabanovic
,
A.
,
2011
, “
Variable Structure Systems With Sliding Modes in Motion Control-A Survey
,”
IEEE Trans. Ind. Inf.
,
7
(
2
), pp.
212
223
.10.1109/TII.2011.2123907
10.
Scoltock
,
J.
,
Geyer
,
T.
, and
Madawala
,
U. K.
,
2013
, “
A Comparison of Model Predictive Control Schemes for MV Induction Motor Drives
,”
IEEE Trans. Ind. Inf.
,
9
(
2
), pp.
909
919
.10.1109/TII.2012.2223706
11.
Alyaqout
,
S. F.
,
Alyaqout
,
P. Y.
, and
Ulsoy
,
A. G.
,
2011
, “
Combined Robust Design and Robust Control of an Electric DC Motor
,”
IEEE/ASME Trans. Mechatron.
,
16
(
3
), pp.
574
582
.10.1109/TMECH.2010.2047652
12.
Li
,
S.
, and
Gu
,
H.
,
2012
, “
Fuzzy Adaptive Internal Model Control Schemes for PMSM Speed-Regulation System
,”
IEEE Trans. Ind. Inf.
,
8
(
4
), pp.
767
779
.10.1109/TII.2012.2205581
13.
Morawiec
,
M.
,
2013
, “
The Adaptive Backstepping Control of Permanent Magnet Synchronous Motor Supplied by Current Source Inverter
,”
IEEE Trans. Ind. Inf.
,
9
(
2
), pp.
1047
1055
.10.1109/TII.2012.2223478
14.
Xu
,
L.
, and
Yao
,
B.
,
2001
, “
Adaptive Robust Precision Motion Control of Linear Motors With Negligible Electrical Dynamics: Theory and Experiments
,”
IEEE/ASME Trans. Mechatron.
,
6
(
4
), pp.
444
452
.10.1109/3516.974858
15.
Yao
,
B.
,
Hu
,
C.
,
Lu
,
L.
, and
Wang
,
Q.
,
2011
, “
Adaptive Robust Precision Motion Control of a High-Speed Industrial Gantry With Cogging Force Compensations
,”
IEEE Trans. Control Syst. Technol.
,
19
(
5
), pp.
1149
1159
.10.1109/TCST.2010.2070504
16.
Han
,
J.
,
2009
, “
From PID to Active Disturbance Rejection Control
,”
IEEE Trans. Ind. Electron.
,
56
(
3
), pp.
900
906
.10.1109/TIE.2008.2011621
17.
Rigatos
,
G. G.
,
2009
, “
Adaptive Fuzzy Control of DC Motors Using State and Output Feedback
,”
Electr. Power Syst. Res.
,
79
(
11
), pp.
15790
1592
.10.1016/j.epsr.2009.06.007
18.
Gong
,
J.
, and
Yao
,
B.
,
2006
, “
Output Feedback Neural Network Adaptive Robust Control With Anolication to Linear Motor Drive System
,”
ASME J. Dyn. Syst. Meas. Control
,
128
(
2
), pp.
227
235
.10.1115/1.2199860
19.
Arreola
,
R. B.
,
2004
, “
Output Feedback Nonlinear Control for a Linear Motor in Suspension Mode
,”
Automatica
,
40
(
12
), pp.
2153
2160
.10.1016/j.automatica.2004.07.005
20.
Xie
,
W.-F.
,
2007
, “
Sliding-Mode-Observer-Based Adaptive Control for Servo Actuator With Friction
,”
IEEE Trans. Ind. Electron.
,
54
(
3
), pp.
1517
1527
.10.1109/TIE.2007.894718
21.
Yao
,
B.
, and
Xu
,
L.
,
2006
, “
Output Feedback Adaptive Robust Control of Uncertain Linear Systems With Disturbances
,”
ASME J. Dyn. Syst. Meas. Control
,
128
(
4
), pp.
938
945
.10.1115/1.2363413
22.
Xu
,
L.
, and
Yao
,
B.
,
2007
, “
Output Feedback Adaptive Robust Precision Motion Control of Linear Motors
,”
Automatica
,
37
(
7
), pp.
1029
1039
.10.1016/S0005-1098(01)00052-8
23.
Krstic
,
M.
,
Kanellakopoulos
,
I.
, and
Kokotovic
,
P. V.
,
1995
,
Nonlinear and Adaptive Control Design
,
Wiley
,
New York
.
24.
Armstrong-Helouvry
,
B.
,
Dupont
,
P.
, and
Canudas de Wit
,
C.
,
1994
, “
A Survey of Models, Analysis Tools and Compensation Methods for the Control of Machines With Friction
,”
Automatica
,
30
(
7
), pp.
1083
1138
.10.1016/0005-1098(94)90209-7
25.
Canudas de Wit
,
C.
,
Olsson
,
H.
,
Astrom
,
K. J.
, and
Lischinsky
,
P.
,
1995
, “
A New Model for Control of Systems With Friction
,”
IEEE Trans. Autom. Control
,
40
(
3
), pp.
419
425
.10.1109/9.376053
26.
Han
,
J.
,
2008
,
Active Disturbance Rejection Control Technique - the Technique for Estimating and Compensating the Uncertainties
,
National Defense Industry Press
Beijing, China
(in Chinese).
27.
Zheng
,
Q.
,
Dong
,
L.
,
Lee
,
D. H.
, and
Gao
,
Z.
,
2009
, “
Active Disturbance Rejection Control for MEMS Gyroscopes
,”
IEEE Trans. Control Syst. Technol.
,
17
(
6
), pp.
1432
1438
.10.1109/TCST.2008.2008638
28.
Yao
,
J.
,
Jiao
,
Z.
, and
Ma
,
D.
,
2014
, “
Adaptive Robust Control of DC Motors with Extended State Observer
,”
IEEE Trans. Ind. Electron.
,
61
(
7
), pp.
3630
3637
.10.1109/TIE.2013.2281165
29.
Tang
,
H.
, and
Li
,
Y.
,
2014
, “
Development and Active Disturbance Rejection Control of a Compliant Micro/Nano-Positioning Piezo-Stage With Dual-Mode
,”
IEEE Trans. Ind. Electron.
,
61
(
3
), pp.
1475
1492
.10.1109/TIE.2013.2258305
30.
Sira-Ramirez
,
H.
,
Gonzalez-Montanez
,
F.
,
Cortes-Romero
,
J. A.
, and
Luviano-Juarez
,
A.
,
2013
, “
A Robust Linear Field-Oriented Voltage Control for the Induction Motor: Experimental Results
,”
IEEE Trans. Ind. Electron.
,
60
(
8
), pp.
3025
3033
.10.1109/TIE.2012.2201430
31.
Yao
,
J.
,
Jiao
,
Z.
, and
Ma
,
D.
,
2014
, “
Extended-State-Observer-Based Output Feedback Nonlinear Robust Control of Hydraulic Systems With Backstepping
,”
IEEE Trans. Ind. Electron.
,
61
(
11
), pp.
6285
6293
.10.1109/TIE.2014.2304912
32.
Zheng
,
Q.
,
Gao
,
L. Q.
, and
Gao
,
Z.
,
2012
, “
On Validation of Extended State Observer Through Analysis and Experimentation
,”
ASME J. Dyn. Syst. Meas. Control
,
134
(
2
), p.
024505
.10.1115/1.4005364
33.
Xing
,
H.-L.
,
Jeon
,
J.-H.
,
Park
,
K. C.
, and
Oh
,
I.-K.
,
2013
, “
Active Disturbance Rejection Control for Precise Position Tracking of Ionic Polymer–Metal Composite Actuators
,”
IEEE/ASME Trans. Mechatron.
,
18
(
1
), pp.
86
95
.10.1109/TMECH.2011.2163524
34.
Liu
,
R.-J.
,
Wu
,
M.
,
Liu
,
G.-P.
,
She
,
J.
, and
Thomas
,
C.
,
2013
, “
Active Disturbance Rejection Control Based on an Improved Equivalent-Input-Disturbance Approach
,”
IEEE/ASME Trans. Mechatron.
,
18
(
4
), pp.
1410
1413
.10.1109/TMECH.2012.2230014
35.
Zheng
,
Q.
,
Gao
,
L.
, and
Gao
,
Z.
,
2007
, “
On Stability Analysis of Active Disturbance Rejection Control for Nonlinear Time-Varying Plants With Unknown Dynamics
,”
Proceedings of the IEEE Conference on Decision and Control
, New Orleans, LA, Dec. 12–14, pp.
3501
3506
.
36.
Wu
,
D.
, and
Chen
,
K.
,
2013
, “
Frequency-Domain Analysis of Nonlinear Active Disturbance Rejection Control via the Describing Function Method
,”
IEEE Trans. Ind. Electron.
,
60
(
9
), pp.
3906
3914
.10.1109/TIE.2012.2203777
37.
Makkar
,
C.
,
Dixon
,
D. W.
,
Sawyer
,
W. G.
, and
Hu
,
G.
,
2005
, “
A New Continuously Differentiable Friction Model for Control Systems Design
,”
Proceedings of the IEEE/ASME International Conference on Advanced Intelligent Mechatronics
, Monterey, CA, Jul. 24–28, pp.
600
605
.
38.
Yao
,
J.
,
Jiao
,
Z.
,
Ma
,
D.
, and
Yan
,
L.
,
2014
, “
High-Accuracy Tracking Control of Hydraulic Rotary Actuators With Modeling Uncertainties
,”
IEEE/ASME Trans. Mechatron.
,
19
(
2
), pp.
633
641
.10.1109/TMECH.2013.2252360
39.
Yao
,
B.
, and
Tomizuka
,
M.
,
1997
, “
Adaptive Robust Control of SISO Nonlinear Systems in a Semi-Strict Feedback Form
,”
Automatica
,
33
(
5
), pp.
893
900
.10.1016/S0005-1098(96)00222-1
40.
Yao
,
J.
,
Jiao
,
Z.
, and
Ma
,
D.
,
2014
, “
RISE-Based Precision Motion Control of DC Motors With Continuous Friction Compensation
,”
IEEE Trans. Ind. Electron.
,
61
(
12
), pp.
7067
7075
.10.1109/TIE.2014.2321344
You do not currently have access to this content.