This paper addresses the problem of goal-directed robot path planning in the presence of uncertainties that are induced by bounded environmental disturbances and actuation errors. The offline infinite-horizon optimal plan is locally updated by online finite-horizon adaptive replanning upon observation of unexpected events (e.g., detection of unanticipated obstacles). The underlying theory is developed as an extension of a grid-based path planning algorithm, called ν, which was formulated in the framework of probabilistic finite state automata (PFSA) and language measure from a control-theoretic perspective. The proposed concept has been validated on a simulation test bed that is constructed upon a model of typical autonomous underwater vehicles (AUVs) in the presence of uncertainties.

References

References
1.
Garau
,
B.
,
Alvarez
,
A.
, and
Oliver
,
G.
,
2005
, “
Path Planning of Autonomous Underwater Vehicles in Current Fields With Complex Spatial Variability: An A* Approach
,”
IEEE
International Conference on Robotics and Automation (ICRA)
,
Barcelona, Spain
, April 18–22, pp.
194
198
.10.1109/ROBOT.2005.1570118
2.
Pêtrès
,
C.
,
Pailhas
,
Y.
,
Patrón
,
P.
,
Petillot
,
Y.
,
Evans
,
J.
, and
Lane
,
D.
,
2007
, “
Path Planning for Autonomous Underwater Vehicles
,”
IEEE Trans. Rob. Autom.
,
23
(
2
), pp.
331
341
.10.1109/TRO.2007.895057
3.
Rhoads
,
B.
,
Mezić
,
I.
, and
Poje
,
A.
,
2010
, “
Minimum Time Feedback Control of Autonomous Underwater Vehicles
,”
IEEE
Conference on Decision and Control (CDC)
,
Atlanta, GA
, Dec. 15–17, pp.
5828
5834
.10.1109/CDC.2010.5717533
4.
Lolla
,
T.
,
Ueckermann
,
P.
,
Yiğit
,
K.
,
Haley
,
P. J.
Jr.
, and
Lermusiaux
,
P. F. J.
,
2012
, “
Path Planning in Time Dependent Flow Fields Using Level Set Methods
,”
IEEE International Conference on Robotics and Automation (ICRA)
, St. Paul, MN, May 14–18, pp.
166
173
.
5.
Majumdar
,
A.
, and
Tedrake
,
R.
,
2013
, “
Robust Online Motion Planning With Regions of Finite Time Invariance
,”
Algorithmic Foundations of Robotics X
,
Springer
,
Berlin, Germany
, pp.
543
558
.
6.
Blackmore
,
L.
,
Ono
,
M.
,
Bektassov
,
A.
, and
Williams
,
B. C.
,
2010
, “
A Probabilistic Particle-Control Approximation of Chance-Constrained Stochastic Predictive Control
,”
IEEE Trans. Rob.
,
26
(
3
), pp.
502
517
.10.1109/TRO.2010.2044948
7.
Chakravorty
,
S.
, and
Kumar
,
S.
,
2011
, “
Generalized Sampling-Based Motion Planners
,”
IEEE Trans. Syst. Man Cybern. Part B Cybern.
,
41
(
3
), pp.
855
866
.10.1109/TSMCB.2010.2098438
8.
LaValle
,
S. M.
,
2006
,
Planning Algorithms
,
Cambridge University
,
Cambridge, UK
.
9.
Chattopadhyay
,
I.
,
Mallapragada
,
G.
, and
Ray
,
A.
,
2009
, “
ν*: A Robot Path Planning Algorithm Based on Renormalized Measure of Probabilistic Regular Languages
,”
Int. J. Control.
,
82
(
5
), pp.
849
867
.10.1080/00207170802343196
10.
Ray
,
A.
,
2005
, “
Signed Real Measure of Regular Languages for Discrete-Event Supervisory Control
,”
Int. J. Control.
,
78
(
12
), pp.
949
967
.10.1080/00207170500202447
11.
Chattopadhyay
,
I.
, and
Ray
,
A.
,
2007
, “
Language-Measure-Theoretic Optimal Control of Probabilistic Finite-State Systems
,”
Int. J. Control.
,
80
(
8
), pp.
1271
1290
.10.1080/00207170701286322
12.
Miettinen
,
K. M.
,
1999
,
Nonlinear Multiobjective Optimization
,
Kluwer Academic Publishers
,
Boston, MA
.
13.
Ray
,
A.
,
2004
, “
Symbolic Dynamic Analysis of Complex Systems for Anomaly Detection
,”
Signal Process.
,
84
(
7
), pp.
1115
1130
.10.1016/j.sigpro.2004.03.011
14.
Gill
,
A.
,
1976
,
Applied Algebra for the Computer Sciences
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
15.
Bapat
,
R. B.
, and
Raghavan
,
T. E. S.
,
1997
,
Non-negative Matrices and Applications
,
Cambridge University
,
Cambridge, UK
.
16.
Rudin
,
W.
,
1988
,
Real and Complex Analysis
,
3rd ed.
,
McGraw Hill
,
New York
.
17.
Fossen
,
T. I.
,
1994
,
Guidance and Control of Ocean Vehicles
,
John Wiley
,
Chichester, West Sussex, UK
.
18.
Chattopadhyay
,
I.
, and
Ray
,
A.
,
2011
, “
GODDeS: Globally ϵ-Optimal Routing Via Distributed Decision-Theoretic Self-Organization
,”
American Control Conference
,
San Francisco, CA
, June 29–July 1, pp.
3215
3220
.
You do not currently have access to this content.