Distributed optimization methods have been used extensively in multirobot task allocation (MRTA) problems. In distributed optimization domain, most of the algorithms are developed for solving convex optimization problems. However, for complex MRTA problems, the cost function can be nonconvex and multimodal in nature with more than one minimum or maximum points. In this paper, an effort has been made to address these complex MRTA problems with multimodal cost functions in a distributed manner. The approach used in this paper is a distributed primal–dual interior point method where noise is added in the search direction as a mechanism to allow the algorithm to escape from suboptimal solutions. The search direction from the distributed primal–dual interior point method and the weighted variable updates help in the generation of feasible primal and dual solutions and in faster convergence while the noise added in the search direction helps in avoiding local optima. The optimality and the computation time of this proposed method are compared with that of the genetic algorithm (GA) and the numerical results are provided in this paper.

References

References
1.
Gerkey
,
B. P.
, and
Matarić
,
M. J.
,
2004
, “
A Formal Analysis and Taxonomy of Task Allocation in Multi-Robot Systems
,”
Int. J. Rob. Res.
,
23
(
9
), pp.
939
954
.10.1177/0278364904045564
2.
Dias
,
M. B.
,
Zlot
,
R.
,
Kalra
,
N.
, and
Stentz
,
A.
,
2006
, “
Market-Based Multirobot Coordination: A Survey and Analysis
,”
Proc. IEEE
,
94
(
7
), pp.
1257
1270
.10.1109/JPROC.2006.876939
3.
Chen
,
J.
, and
Sun
,
D.
,
2012
, “
Coalition-Based Approach to Task Allocation of Multiple Robots With Resource Constraints
,”
IEEE Trans. Autom. Sci. Eng.
,
9
(
3
), pp.
516
528
.10.1109/TASE.2012.2201470
4.
Andersson
,
M.
, and
Sandholm
,
T.
,
2000
, “
Contract Type Sequencing for Reallocative Negotiation
,”
IEEE 20th International Conference on Distributed Computing Systems
, Taipei, Taiwan, Apr. 10–13, pp.
154
160
.
5.
Luo
,
L.
,
Chakraborty
,
N.
, and
Sycara
,
K.
, “
A Distributed Algorithm for Constrained Multi-Robot Task Assignment for Grouped Tasks
,” Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, Technical Report No. CMU-RI-TR-12-35.
6.
Dahl
,
T. S.
,
Matarić
,
M.
, and
Sukhatme
,
G. S.
,
2009
, “
Multi-Robot Task Allocation Through Vacancy Chain Scheduling
,”
Rob. Autonom. Syst.
,
57
(
6
), pp.
674
687
.10.1016/j.robot.2008.12.001
7.
Mosteo
,
A. R.
, and
Montano
,
L.
,
2010
, “
A Survey of Multi-Robot Task Allocation
,” Instituto de Investigación en Ingeniería de Aragón, University of Zaragoza, Zaragoza, Spain, Technical Report No. AMI-009-10-TEC.
8.
Bertsekas
,
D.
, and
Tsitsiklis
,
J.
,
1989
,
Parallel and Distributed Computation
, Prentice-Hall, Upper Saddle River, NJ.
9.
Kelly
,
F. P.
,
Maulloo
,
A. K.
, and
Tan
,
D. K.
,
1998
, “
Rate Control for Communication Networks: Shadow Prices, Proportional Fairness and Stability
,”
J. Oper. Res. Soc.
,
49
(
3
), pp.
237
252
.10.1057/palgrave.jors.2600523
10.
Boyd
,
S.
,
Ghosh
,
A.
,
Prabhakar
,
B.
, and
Shah
,
D.
,
2006
, “
Randomized Gossip Algorithms
,”
IEEE Trans. Inf. Theory
,
52
(
6
), pp.
2508
2530
.10.1109/TIT.2006.874516
11.
Karlsson
,
M.
,
Ygge
,
F.
, and
Andersson
,
A.
,
2007
, “
Market-Based Approaches to Optimization
,”
Comput. Intell.
,
23
(
1
), pp.
92
109
.10.1111/j.1467-8640.2007.00296.x
12.
Wellman
,
M.
,
1993
, “
A Market-Oriented Programming Environment and Its Application to Distributed Multicommodity Flow Problems
,”
J. Artif. Intell. Res.
,
1
(
1
), pp.
1
23
.
13.
Clearwater
,
S.
,
1996
,
Market-Based Control: A Paradigm for Distributed Resource Allocation
,
World Scientific
,
Singapore
.
14.
Dias
,
M.
, and
Stentz
,
A.
,
2002
, “
Opportunistic Optimization for Market-Based Multirobot Control
,”
IEEE/RSJ
International Conference on Intelligent Robots and Systems, Lausanne, Switzerland, Sept. 30–Oct. 4, Vol.
3
, pp.
2714
2720
.10.1109/IRDS.2002.1041680
15.
Zlot
,
R.
, and
Stentz
,
A.
,
2006
, “
Market-Based Multirobot Coordination for Complex Tasks
,”
Int. J. Rob. Res.
,
25
(
1
), pp.
73
101
.10.1177/0278364906061160
16.
Tan
,
C.
,
Palomar
,
D.
, and
Chiang
,
M.
,
2006
, “
Distributed Optimization of Coupled Systems With Applications to Network Utility Maximization
,”
IEEE International Conference on Acoustics, Speech and Signal Processing
, Toulouse, France, May 14–19, Vol.
5
, pp.
981
984
.
17.
HomChaudhuri
,
B.
,
Kumar
,
M.
, and
Devabhaktuni
,
V.
,
2012
, “
Market Based Approach for Solving Optimal Power Flow Problem in Smart Grid
,”
American Control Conference (ACC)
, Montreal, QC, Canada, June 27–29, pp.
3095
3100
.
18.
HomChaudhuri
,
B.
, and
Kumar
,
M.
,
2011
, “
Market Based Allocation of Power in Smart Grid
,”
American Control Conference (ACC)
, San Francisco, CA, June 29–July 1, pp.
3251
3256
.
19.
HomChaudhuri
,
B.
, and
Kumar
,
M.
,
2012
, “
Market-Based Distributed Optimization Approaches for Three Classes of Resource Allocation Problems
,”
Parallel Distrib. Comput. Networks
,
1
(
1
), pp. 1–12.
20.
HomChaudhuri
,
B.
,
Kumar
,
M.
, and
Devabhaktuni
,
V.
,
2011
, “
A Market Based Distributed Optimization for Power Allocation in Smart Grid
,”
ASME
Paper No. DSCC2011-6140.10.1115/DSCC2011-6140
21.
Nedic
,
A.
, and
Ozdaglar
,
A.
,
2009
, “
Distributed Subgradient Methods for Multi-Agent Optimization
,”
IEEE Trans. Autom. Control
,
54
(
1
), pp.
48
61
.10.1109/TAC.2008.2009515
22.
Jadbabaie
,
A.
,
Ozdaglar
,
A.
, and
Zargham
,
M.
,
2009
, “
A Distributed Newton Method for Network Optimization
,”
Proceedings of the 48th IEEE Conference on Decision and Control, held jointly with the 28th Chinese Control Conference
. CDC/CCC, Shanghai, China, Dec. 15–18, pp.
2736
2741
.
23.
Jadbabaie
,
A.
,
Lin
,
J.
, and
Morse
,
A.
,
2003
, “
Coordination of Groups of Mobile Autonomous Agents Using Nearest Neighbor Rules
,”
IEEE Trans. Autom. Control
,
48
(
6
), pp.
988
1001
.10.1109/TAC.2003.812781
24.
Blondel
,
V.
,
Hendrickx
,
J.
,
Olshevsky
,
A.
, and
Tsitsiklis
,
J.
,
2005
, “
Convergence in Multiagent Coordination, Consensus, and Flocking
,”
44th IEEE Conference on Decision and Control, and 2005 European Control Conference
, Seville, Spain, Dec. 12–15, pp.
2996
3000
.
25.
Nedic
,
A.
, and
Bertsekas
,
D.
,
2001
, “
Incremental Subgradient Methods for Nondifferentiable Optimization
,”
SIAM J. Optim.
,
12
(
1
), pp.
109
138
.10.1137/S1052623499362111
26.
Johansson
,
B.
,
Rabi
,
M.
, and
Johansson
,
M.
,
2009
, “
A Randomized Incremental Subgradient Method for Distributed Optimization in Networked Systems
,”
SIAM J. Optim.
,
20
(
3
), pp. 1
157
1170
.10.1137/08073038X
27.
Talebi
,
M. S.
,
Khonsari
,
A.
,
Hajiesmaili
,
M. H.
, and
Jafarpour
,
S.
,
2009
, “
A Suboptimal Network Utility Maximization Approach for Scalable Multimedia Applications
,”
IEEE
Global Telecommunications Conference, Honolulu, HI, Nov. 30–Dec. 4, pp.
1
6
.10.1109/GLOCOM.2009.5425607
28.
Crutchley
,
D.
, and
Zwolinski
,
M.
,
2002
, “
Using Evolutionary and Hybrid Algorithms for DC Operating Point Analysis of Nonlinear Circuits
,”
Proceedings of the 2002 Congress on Evolutionary Computation
, Vol.
1
, Honolulu, HI, May 12–17, pp.
753
758
.10.1109/CEC.2002.1007020
29.
Dong
,
Z.
,
Lu
,
M.
,
Lu
,
Z.
, and
Wong
,
K.
,
2006
, “
A Differential Evolution Based Method for Power System Planning
,”
IEEE
Congress on Evolutionary Computation
, Vancouver, BC, Canada, July 16–21, pp.
2699
2706
.10.1109/CEC.2006.1688646
30.
Soterroni
,
A. C.
,
Galski
,
R. L.
, and
Ramos
,
F. M.
,
2011
, “
The q-Gradient Vector for Unconstrained Continuous Optimization Problems
,” Operations Research Proceedings, Springer Physica-Verlag, Heidelberg, Germany.
31.
Pessin
,
G.
,
Osório
,
F.
,
Hata
,
A. Y.
, and
Wolf
,
D. F.
,
2010
, “
Intelligent Control and Evolutionary Strategies Applied to Multirobotic Systems
,”
IEEE
International Conference on Industrial Technology (ICIT)
, Viña del Mar, Chile, Mar. 14–17, pp.
1427
1432
.10.1109/ICIT.2010.5472498
32.
Casbeer
,
D. W.
,
Beard
,
R.
,
McLain
,
T.
,
Li
,
S.-M.
, and
Mehra
,
R. K.
,
2005
, “
Forest Fire Monitoring With Multiple Small UAVs
,”
Proceedings of the American Control Conference
, Portland, OR, June 8–10, pp.
3530
3535
.
33.
Gorte
,
R.
, and
Economics
,
H.
,
2013
,
The Rising Cost of Wildfire Protection
,
Headwaters Economics
,
Bozeman MT
.
34.
Palomar
,
D. P.
, and
Chiang
,
M.
,
2006
, “
A Tutorial on Decomposition Methods for Network Utility Maximization
,”
IEEE J. Selected Areas Commun.
,
24
(
8
), pp.
1439
1451
.10.1109/JSAC.2006.879350
35.
Boyd
,
S.
, and
Vandenberghe
,
L.
,
2004
,
Convex Optimization
,
Cambridge University
,
Cambridge, UK
.
36.
HomChaudhuri
,
B.
,
2013
, “
Price-Based Distributed Optimization in Large-Scale Networked Systems
,” Ph.D. thesis, University of Cincinnati, Cincinnati, OH.
37.
HomChaudhuri
,
B.
, and
Kumar
,
M.
,
2014
, “
A Newton Based Distributed Optimization Method With Local Interactions for Large-Scale Networked Optimization Problems
,”
American Control Conference
, Portland, OR, June 4–6, pp.
4336
4341
.
38.
Stanley
,
H. E.
,
1987
, “
Introduction to Phase Transitions and Critical Phenomena
,” Introduction to Phase Transitions and Critical Phenomena, Oxford University, Oxford, UK, p.
336
.
39.
Vicsek
,
T.
,
Czirók
,
A.
,
Ben-Jacob
,
E.
,
Cohen
,
I.
, and
Shochet
,
O.
,
1995
, “
Novel Type of Phase Transition in a System of Self-Driven Particles
,”
Phys. Rev. Lett.
,
75
(
6
), pp.
1226
1229
.10.1103/PhysRevLett.75.1226
You do not currently have access to this content.