This paper presents a hierarchical approach for estimating the mission feasibility, i.e., the probability of mission completion (PoMC), for mobile robotic systems operating in stochastic environments. Mobile robotic systems rely on onboard energy sources that are expended due to stochastic interactions with the environment. Resultantly, a bivariate distribution comprised of energy source (e.g., battery) run-time and mission time marginal distributions can be shown to represent a mission process that characterizes the distribution of all possible missions. Existing methodologies make independent stochastic predictions for battery run-time and mission time. The approach presented makes use of the marginal predictions, as prediction pairs, to allow for Bayesian correlation estimation and improved process characterization. To demonstrate both prediction accuracy and mission classification gains, the proposed methodology is validated using a novel experimental testbed that enables repeated battery discharge studies to be conducted as a small robotic ground vehicle traverses stochastic laboratory terrains.

References

References
1.
Lundberg
,
C.
,
Christensen
,
H. I.
, and
Reinhold
,
R.
,
2007
, “
Long-Term Study of a Portable Field Robot in Urban Terrain
,”
J. Field Rob.
,
24
(8–9), pp.
625
650
.10.1002/rob.20214
2.
Buet
,
M.
,
Pearson
,
J.
, and
Bennett
,
D. S.
,
2013
, “
Robotic Mining System for Rapid Earth Orbit Capture of Asteroid Resources
,” International Space Development Conference (ISDC), San Diego, CA, May 23–27, pp.
1
22
.
3.
Carlson
,
J.
, and
Murphy
,
R.
,
2005
, “
How UGVs Physically Fail in the Field
,”
IEEE Trans. Rob.
,
21
(
3
), pp.
423
437
.10.1109/TRO.2004.838027
4.
Tilbury
,
D.
, and
Ulsoy
,
A.
,
2010
, “
Reliable Operations of Unmanned Ground Vehicles: Research at the Ground Robotics Reliability Center
,”
7th IARP Workshop on Technical Challenges for Dependable Robots in Human Environments
, Toulouse, France, Jun. 16–17, pp.
27
32
.
5.
Liu
,
J.
,
Chou
,
P. H.
,
Bagherzadeh
,
N.
, and
Kurdahi
,
F.
,
2001
, “
Power-Aware Scheduling Under Timing Constraints for Mission-Critical Embedded Systems
,”
Proceedings of the 38th Conference on Design Automation
(
DAC’01
), Las Vegas, NV, Jun. 18–22, pp.
840
845
.10.1109/DAC.2001.156253
6.
Ding
,
Y.
,
2011
, “
U.S. Army's Ground Vehicle Energy Storage R&D Programs & Goals
,” Energy Storage Team, U.S. Army TAR DEC, Warren, MI, Technical Report No. 21348RC.
7.
Linden
,
D.
,
2005
,
Handbook of Batteries
,
2nd ed.
,
McGraw-Hill
,
New York
.
8.
Sadrpour
,
A.
, and
Ulsoy
,
A. G.
,
2013
, “
Mission Energy Prediction for Unmanned Ground Vehicles Using Real-Time Measurements and Prior Knowledge
,”
J. Field Rob.
,
30
(
3
), pp.
1
16
.10.1002/rob.21453
9.
Jongerden
,
M. R.
, and
Haverkort
,
B. R.
,
2009
, “
Which Battery Model to Use?
IET Software
,
3
(
6
), pp.
445
457
.10.1049/iet-sen.2009.0001
10.
Narasimhan
,
S.
,
Balaban
,
E.
,
Daigle
,
M.
,
Roychoudhury
,
I.
,
Sweet
,
A.
,
Celaya
,
J.
, and
Goebel
,
K.
,
2012
, “
Autonomous Decision Making for Planetary Rovers Using Diagnostic and Prognostic Information
,”
8th IFAC Symposium on Fault Detection, Supervision and Safety of Technical Processes
, Mexico City, Mexico, Aug. 29–31, pp. 289–294.10.3182/20120829-3-MX-2028.00243
11.
Ooi
,
C. C.
, and
Schindelhauer
,
C.
,
2009
, “
Minimal Energy Path Planning for Wireless Robots
,”
Mobile Networks Appl.
,
14
(
3
), pp.
309
321
.10.1007/s11036-008-0150-5
12.
Wei
,
H.
,
Wang
,
B.
,
Wang
,
Y.
,
Shao
,
Z.
, and
Chan
,
K. C.
,
2012
, “
Staying-Alive Path Planning With Energy Optimization for Mobile Robots
,”
Expert Syst. Appl.
,
39
(
3
), pp.
3559
3571
.10.1016/j.eswa.2011.09.046
13.
Wang
,
T.
, and
Cassandras
,
C.
,
2012
, “
Optimal Control of Batteries With Fully and Partially Available Rechargeability
,”
Automatica
,
48
(
8
), pp.
1658
1666
.10.1016/j.automatica.2012.05.031
14.
Lu
,
S.
,
Lu
,
H.
, and
Kolarik
,
W.
,
2001
, “
Multivariate Performance Reliability Prediction in Real-Time
,”
Reliab. Eng. Syst. Saf.
,
72
(
1
), pp.
39
45
.10.1016/S0951-8320(00)00102-2
15.
Xu
,
Z.
,
Ji
,
Y.
,
Zhou
,
D.
, and
Member
,
S.
,
2009
, “
A New Real-Time Reliability Prediction Method for Dynamic Systems Based on On-Line Fault Prediction
,”
IEEE Trans. Reliab.
,
58
(
3
), pp.
523
538
.10.1109/TR.2009.2026785
16.
Li
,
J.
,
Coit
,
D. W.
, and
Elsayed
,
E. A.
,
2011
, “
Reliability Modeling of a Series System With Correlated or Dependent Component Degradation Processes
,”
2011 International Conference on Quality, Reliability, Risk, Maintenance, and Safety Engineering
, (
ICQR2MSE
), Xi'an, China, Jun. 17–19, pp.
388
393
.10.1109/ICQR2MSE.2011.5976637
17.
Green
,
A. E.
, and
Bourne
,
A. J.
,
1972
,
Reliability Technology
,
Wiley
,
London
.
18.
Luo
,
M.
,
Wang
,
D.
,
Pham
,
M.
,
Low
,
C.
,
Zhang
,
J.
,
Zhang
,
D.
, and
Zhao
,
Y.
,
2005
, “
Model-Based Fault Diagnosis/Prognosis for Wheeled Mobile Robots: A Review
,” 31st Annual Conference of
IEEE
Industrial Electronics Society
(IECON 2005), Raleigh, NC, Nov. 6–10.10.1109/IECON.2005.1569256
19.
Liu
,
D.
,
Pang
,
J.
,
Zhou
,
J.
,
Peng
,
Y.
, and
Pecht
,
M.
,
2013
, “
Prognostics for State of Health Estimation of Lithium-Ion Batteries Based on Combination Gaussian Process Functional Regression
,”
Microelectron. Reliab.
,
53
(
6
), pp.
832
839
.10.1016/j.microrel.2013.03.010
20.
Saha
,
B.
,
Koshimoto
,
E.
,
Quach
,
C. C.
,
Hogge
,
E. F.
,
Strom
,
T. H.
,
Hill
,
B. L.
,
Vazquez
,
S. L.
, and
Goebel
,
K.
,
2011
, “
Battery Health Management System for Electric UAVs
,”
Aerospace Conference
,
IEEE
, Big Sky, MT, Mar. 5–12, pp.
1
9
.10.1109/AERO.2011.5747587
21.
LeSage
,
J.
, and
Longoria
,
R.
,
2013
, “
Characterization of Load Uncertainty in Unstructured Terrains and Applications to Battery Remaining Run-Time Prediction
,”
J. Field Rob.
,
30
(3), pp.
472
487
.10.1002/rob.21456
22.
Broderick
,
J. A.
,
Tilbury
,
D. M.
, and
Atkins
,
E. M.
,
2013
, “
Optimal Coverage Trajectories for a UGV With Tradeoffs for Energy and Time
,”
Auton. Rob.
,
36
(3), pp.
257
271
.10.1007/s10514-013-9348-x
23.
Ceraolo
,
M.
, and
Pede
,
G.
,
2001
, “
Techniques for Estimating the Residual Range of an Electric Vehicle
,”
IEEE Trans. Veh. Technol.
,
50
(
1
), pp.
109
115
.10.1109/25.917893
24.
Wu
,
G.
,
Vachtsevanos
,
F.
,
Lewis
,
M.
,
Roemer
,
A.
, and
Hess
,
B.
,
2006
,
Intelligent Fault Diagnosis and Prognosis for Engineering Systems
,
Wiley, Hoboken, NJ
.
25.
Sari
,
J. K.
,
Newby
,
M. J.
,
Brombacher
,
A. C.
, and
Tang
,
L. C.
,
2009
, “
Bivariate Constant Stress Degradation Model: LED Lighting System Reliability Estimation With Two-Stage Modeling
,”
Qual. Reliab. Eng. Int.
,
25
(8), pp.
1067
1084
.10.1002/qre.1022
26.
Costa
,
O. L. V.
,
Fragoso
,
M. D.
, and
Marques
,
R. P.
,
2005
,
Discrete-Time Markov Jump Linear Systems
(Probability and Its Applications), Springer-Verlag, London, UK.
27.
Maybeck
,
P. S.
,
1979
,
Stochastic Models, Estimation and Control
,
1st ed.
,
Academic
,
New York
.
28.
Rencher
,
A. C.
, and
Christensen
,
W. F.
,
2002
,
Methods of Multivariate Analysis
,
Wiley, Hoboken, NJ
.
29.
Orchard
,
M.
,
Cerda
,
M.
,
Olivares
,
B.
, and
Silva
,
J.
,
2012
, “
Sequential Monte Carlo Methods for Discharge Time Prognosis in Lithium-Ion Batteries
,”
Int. J. Prognostics Health Manage.
,
3
(2), pp.
1
12
.
30.
Chen
,
M.
, and
Rincon-Mora
,
G. A.
,
2006
, “
Accurate Electrical Battery Model Capable of Predicting Runtime and I-V Performance
,”
IEEE Trans. Energy Convers.
,
21
(
2
), pp.
504
511
.10.1109/TEC.2006.874229
31.
Candy
,
J. V.
,
2009
,
Bayesian Signal Processing: Classical, Modern, and Particle Filtering Methods
,
Wiley, Hoboken, NJ
.
32.
Tang
,
L.
,
DeCastro
,
J.
,
Kacprzynski
,
G.
,
Goebel
,
K.
, and
Vachtsevanos
,
G.
,
2010
, “
Filtering and Prediction Techniques for Model-Based Prognosis and Uncertainty Management
,” Prognostics and Health Management Conference (
PHM’10
), Macao, China, Jan. 12–14, pp.
1
10
.10.1109/PHM.2010.5413490
33.
Chen
,
H.
, and
Rakha
,
H. A.
,
2012
, “
Prediction of Dynamic Freeway Travel Times Based on Vehicle Trajectory Construction
,” 15th International
IEEE
Conference on Intelligent Transportation Systems, Anchorage, AK, Sep. 16–19, pp.
576
581
.10.1109/ITSC.2012.6338825
34.
Wu
,
C.-H.
,
Ho
,
J.-M.
, and
Lee
,
D.
,
2004
, “
Travel-Time Prediction With Support Vector Regression
,”
IEEE Trans. Intell. Transp. Syst.
,
5
(
4
), pp.
276
281
.10.1109/TITS.2004.837813
35.
Chowdhury
,
N.
, and
Leung
,
C.
,
2011
, “
Improved Travel Time Prediction Algorithms for Intelligent Transportation Systems
,”
KES
(Lecture Notes in Computer Science), Vol. 6882, Springer, Berlin, pp.
355
365
.10.1007/978-3-642-23863-5_36
36.
Idé
,
T.
, and
Kato
,
S.
,
2009
, “
Travel-Time Prediction Using Gaussian Process Regression: A Trajectory-Based Approach
,”
9th SIAM International Conference on Data Mining
(
SDM09
), Sparks, NV, Apr. 30–May 2, pp.
1185
1196
.10.1137/1.9781611972795.101
37.
Skog
,
I.
,
Händel
,
P.
, and
Member
,
S.
,
2009
, “
In-Car Positioning and Navigation Technologies—A Survey
,”
IEEE Trans. Intell. Transp. Syst.
,
10
(
1
), pp.
4
21
.10.1109/TITS.2008.2011712
38.
Pandit
,
S.
, and
Wu
,
S.-M.
,
2001
,
Time Series and System Analysis With Applications
,
Krieger Publishing Company
, Malabar, FL.
39.
LeSage
,
J. R.
, and
Longoria
,
R. G.
,
2013
, “
Hybrid Observer Design for Online Battery State-of-Charge Estimation
,”
American Control Conference
,
IEEE
, Washington DC, Jun. 17–19, pp.
1994
1999
.10.1109/ACC.2013.6580128
40.
Saxena
,
A.
,
Celaya
,
J.
,
Saha
,
B.
,
Saha
,
S.
, and
Goebel
,
K.
,
2010
, “
Evaluating Prognostics Performance for Algorithms Incorporating Uncertainty Estimates
,” 2010
IEEE
Aerospace Conference
, Big Sky, MT, Mar. 6–13, pp.
1
11
.10.1109/AERO.2010.5446828
41.
Fawcett
,
T.
,
2004
, “
ROC Graphs: Notes and Practical Considerations for Researchers
,” HP Laboratories, Palo Alto, CA, Report No. HPL-2003-4.
You do not currently have access to this content.