In this paper, we propose distributed Gaussian process regression (GPR) for resource-constrained distributed sensor networks under localization uncertainty. The proposed distributed algorithm, which combines Jacobi over-relaxation (JOR) and discrete-time average consensus (DAC), can effectively handle localization uncertainty as well as limited communication and computation capabilities of distributed sensor networks. We also extend the proposed method hierarchically using sparse GPR to improve its scalability. The performance of the proposed method is verified in numerical simulations against the centralized maximum a posteriori (MAP) solution and a quick-and-dirty solution. We show that the proposed method outperforms the quick-and-dirty solution and achieve an accuracy comparable to the centralized solution.

References

References
1.
Culler
,
D.
,
Estrin
,
D.
, and
Srivastava
,
M.
,
2004
, “
Guest Editors' Introduction: Overview of Sensor Networks
,”
Computer
,
7
(
8
), pp.
41
49
.10.1109/MC.2004.93
2.
Estrin
,
D.
,
Culler
,
D.
,
Pister
,
K.
, and
Sukhatme
,
G.
,
2002
, “
Connecting the Physical World With Pervasive Networks
,”
IEEE Pervasive Comput.
,
1
(
1
), pp.
59
69
.10.1109/MPRV.2002.993145
3.
Lynch
,
K.
,
Schwartz
,
I.
,
Yang
,
P.
, and
Freeman
,
R.
,
2008
, “
Decentralized Environmental Modeling by Mobile Sensor Networks
,”
IEEE Trans. Rob.
,
24
(
3
), pp.
710
724
.10.1109/TRO.2008.921567
4.
Choi
,
J.
,
Oh
,
S.
, and
Horowitz
,
R.
,
2009
, “
Distributed Learning and Cooperative Control for Multi-Agent Systems
,”
Automatica
,
45
(
12
), pp.
2802
2814
.10.1016/j.automatica.2009.09.025
5.
Gu
,
D.
, and
Hu
,
H.
,
2012
, “
Spatial Gaussian Process Regression With Mobile Sensor Networks
,”
IEEE Trans. Neural Networks Learn. Syst.
,
23
(
8
), pp.
1279
1290
.
6.
Rasmussen
,
C.
, and
Williams
,
C.
,
2006
,
Gaussian Processes for Machine Learning
, Vol.
1
,
MIT
,
Cambridge, MA
.
7.
Choi
,
J.
,
Lee
,
J.
, and
Oh
,
S.
,
2008
, “
Swarm Intelligence for Achieving the Global Maximum Using Spatio-Temporal Gaussian Processes
,”
Proceedings of the American Control Conference
, Seattle, WA, pp.
135
140
.
8.
Xu
,
Y.
,
Choi
,
J.
, and
Oh
,
S.
,
2011
, “
Mobile Sensor Network Navigation Using Gaussian Processes With Truncated Observations
,”
IEEE Trans. Rob.
,
27
(
6
), pp.
1118
1131
.10.1109/TRO.2011.2162766
9.
Williams
,
C.
, and
Seeger
,
M.
,
2001
, “
Using the Nystrom Method to Speed up Kernel Machines
,”
Proceedings of the Advances in Neural Information Processing Systems
, Vancouver, British Columbia, Canada, pp.
682
688
.
10.
Lawrence
,
N.
,
Seeger
,
M.
, and
Herbrich
,
R.
,
2002
, “
Fast Sparse Gaussian Process Methods: The Informative Vector Machine
,”
Proceedings of the Advances in Neural Information Processing Systems
, Montreal, Quebec, Canada, pp.
609
616
.
11.
Quiñonero-Candela
,
J.
, and
Rasmussen
,
C. E.
,
2005
, “
A Unifying View of Sparse Approximate Gaussian Process Regression
,”
J. Mach. Learn. Res.
,
6
, pp.
1939
1959
.
12.
Chen
,
J.
,
Low
,
K. H.
,
Tan
,
C. K.-Y.
,
Oran
,
A.
,
Jaillet
,
P.
,
Dolan
,
J. M.
, and
Sukhatme
,
G. S.
,
2012
, “
Decentralized Data Fusion and Active Sensing With Mobile Sensors for Modeling and Predicting Spatiotemporal Traffic Phenomena
,”
Proc. of the Conference on Uncertainty in Artificial Intelligence, Catalina Island, CA
, pp.
163
173
.
13.
Oguz-Ekim
,
P.
,
Gomes
,
J.
,
Xavier
,
J.
, and
Oliveira
,
P.
,
2011
, “
Robust Localization of Nodes and Time-Recursive Tracking in Sensor Networks Using Noisy Range Measurements
,”
IEEE Trans. Signal Process.
,
59
(
8
), pp.
3930
3942
.10.1109/TSP.2011.2153848
14.
Karlsson
,
R.
, and
Gustafsson
,
F.
,
2006
, “
Bayesian Surface and Underwater Navigation
,”
IEEE Trans. Signal Process.
,
54
(
11
), pp.
4204
4213
.10.1109/TSP.2006.881176
15.
Mysorewala
,
M.
,
Popa
,
D.
, and
Lewis
,
F.
,
2009
, “
Multi-Scale Adaptive Sampling With Mobile Agents for Mapping of Forest Fires
,”
J. Intell. Rob. Syst.
,
54
(
4
), pp.
535
565
.10.1007/s10846-008-9246-1
16.
Jadaliha
,
M.
,
Xu
,
Y.
,
Choi
,
J.
,
Johnson
,
N.
, and
Li
,
W.
,
2013
, “
Gaussian Process Regression for Sensor Networks Under Localization Uncertainty
,”
IEEE Trans. Signal Process.
,
61
(
2
), pp.
223
237
.10.1109/TSP.2012.2223695
17.
Choi
,
S.
,
Jadaliha
,
M.
,
Choi
,
J.
, and
Oh
,
S.
,
2013
, “
Distributed Gaussian Process Regression for Mobile Sensor Network Under Localization Uncertainty
,”
Proceedings of the IEEE Conference on Decision and Control
, Florence, Italy, pp.
4766
4771
.
18.
Smola
,
A.
, and
Bartlett
,
P.
,
2001
, “
Sparse Greedy Gaussian Process Regression
,”
Proceedings of the Advances in Neural Information Processing Systems
, Vancouver, British Columbia, Canada.
19.
Tierney
,
L.
, and
Kadane
,
J.
,
1986
, “
Accurate Approximations for Posterior Moments and Marginal Densities
,”
J. Am. Stat. Assoc.
,
81
(
393
), pp.
82
86
.10.1080/01621459.1986.10478240
20.
Tierney
,
L.
,
Kass
,
R.
, and
Kadane
,
J. B.
,
1989
, “
Fully Exponential Laplace Approximations to Expectations and Variances of Nonpositive Functions
,”
J. Am. Stat. Assoc.
,
84
(
407
), pp.
710
716
.10.1080/01621459.1989.10478824
21.
Miyata
,
Y.
,
2004
, “
Fully Exponential Laplace Approximations Using Asymptotic Modes
,”
J. Am. Stat. Assoc.
,
99
(
468
), pp.
1037
1049
.10.1198/016214504000001673
22.
Miyata
,
Y.
,
2010
, “
Laplace Approximations to Means and Variances With Asymptotic Modes
,”
J. Stat. Plann. Inference
,
140
(
2
), pp.
382
392
.10.1016/j.jspi.2009.06.015
23.
Bertsekas
,
D.
, and
Tsitsiklis
,
J.
,
1989
,
Parallel and Distributed Computation: Numerical Methods
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
24.
Udwadia
,
F.
,
1992
, “
Some Convergence Results Related to the JOR Iterative Method for Symmetric, Positive-Definite Matrices
,”
Appl. Math. Comput.
,
47
(
1
), pp.
37
45
.10.1016/0096-3003(92)90063-7
25.
Cortés
,
J.
,
2009
, “
Distributed Kriged Kalman Filter for Spatial Estimation
,”
IEEE Trans. Autom. Control
,
54
(
12
), pp.
2816
2827
.10.1109/TAC.2009.2034192
26.
Olfati-Saber
,
R.
,
Fax
,
J. A.
, and
Murray
,
R. M.
,
2007
, “
Consensus and Cooperation in Networked Multi-Agent Systems
,”
Proc. IEEE
,
95
, pp.
215
233
.10.1109/JPROC.2006.887293
27.
Olshevsky
,
A.
, and
Tsitsiklis
,
J. N.
,
2009
, “
Convergence Speed in Distributed Consensus and Averaging
,”
SIAM J. Control Optim.
,
48
(
1
), pp.
33
55
.10.1137/060678324
28.
Kempe
,
D.
, and
McSherry
,
F.
,
2008
, “
A Decentralized Algorithm for Spectral Analysis
,”
J. Comput. Syst. Sci.
,
74
(
1
), pp.
70
83
.10.1016/j.jcss.2007.04.014
29.
Forero
,
P. A.
,
Cano
,
A.
, and
Giannakis
,
G. B.
,
2008
, “
Consensus-Based k-Means Algorithm for Distributed Learning Using Wireless Sensor Networks
,”
Proceedings of the Workshop on Sensors, Signal and Info. Process
., Sedona, AZ, pp.
11
14
.
30.
Forero
,
P. A.
,
Cano
,
A.
, and
Giannakis
,
G. B.
,
2010
, “
Convergence Analysis of Consensus-Based Distributed Clustering
,”
IEEE International Conference on Acoustics Speech and Signal Processing (ICASSP)
, Dallas, TX, pp.
1890
1893
.
31.
Choi
,
S.
,
Jadaliha
,
M.
,
Choi
,
J.
, and
Oh
,
S.
, “
Distributed Gaussian Process Regression Under Localization Uncertainty (Longer Version)
,” Technical Report No. 2014-04-1.
You do not currently have access to this content.