A control strategy is employed that modifies the stochastic escape times from one basin of attraction to another in a model of a double-gyre flow. The system studied captures the behavior of a large class of fluid flows that circulate and have multiple almost invariant sets. In the presence of noise, a particle in one gyre may randomly switch to an adjacent gyre due to a rare large fluctuation. We show that large fluctuation theory may be applied for controlling autonomous agents in a stochastic environment, in fact leveraging the stochasticity to the advantage of switching between regions of interest and concluding that patterns may be broken or held over time as the result of noise. We demonstrate that a controller can effectively manipulate the probability of a large fluctuation; this demonstrates the potential of optimal control strategies that work in combination with the endemic stochastic environment. To demonstrate this, stochastic simulations and numerical continuation are employed to tie together experimental findings with predictions.

References

References
1.
Forgoston
,
E.
,
Billings
,
L.
,
Yecko
,
P.
, and
Schwartz
,
I. B.
,
2011
, “
Set-Based Corral Control in Stochastic Dynamical Systems: Making Almost Invariant Sets More Invariant
,”
Chaos
,
21
(
1
), p.
013116
.10.1063/1.3539836
2.
Mallory
,
K.
,
Hsieh
,
M. A.
,
Forgoston
,
E.
, and
Schwartz
,
I. B.
,
2013
, “
Distributed Allocation of Mobile Sensing Swarms in Gyre Flows
,”
Nonlinear Processes Geophys.
,
20
, pp.
657
668
.10.5194/npg-20-657-2013
3.
Doostan
,
A.
,
Ghanem
,
R. G.
, and
Red-Horse
,
J.
,
2007
, “
Stochastic Model Reduction for Chaos Representations
,”
Comput. Methods Appl. Mech. Eng.
,
196
(37–40), pp.
3951
3966
.10.1016/j.cma.2006.10.047
4.
Forgoston
,
E.
,
Billings
,
L.
, and
Schwartz
,
I. B.
,
2009
, “
Accurate Time Series Prediction in Reduced Stochastic Epidemic Models
,”
Chaos
,
19
(4), p.
043110
.10.1063/1.3247350
5.
Venturi
,
D.
,
Wan
,
X.
, and
Karniadakis
,
G. E.
,
2008
, “
Stochastic Low-Dimensional Modelling of a Random Laminar Wake Past a Circular Cylinder
,”
J. Fluid Mech.
,
606
, pp.
339
367
.10.1017/S0022112008001821
6.
Fyrenius
,
A.
,
Wigström
,
L.
,
Ebbers
,
T.
,
Karlsson
,
M.
,
Engvall
,
J.
, and
Bolger
,
A. F.
,
2001
, “
Three Dimensional Flow in the Human Left Atrium
,”
Heart
,
86
(4), pp.
448
455
.10.1136/heart.86.4.448
7.
Provenzale
,
A.
,
1999
, “
Transport by Coherent Barotropic Vortices
,”
Annu. Rev. Fluid Mech.
,
31
, pp.
55
93
.10.1146/annurev.fluid.31.1.55
8.
Haller
,
G.
,
2001
, “
Distinguished Material Surfaces and Coherent Structures in Three-Dimensional Fluid Flows
,”
Physica D
,
149
(4), pp.
248
277
.10.1016/S0167-2789(00)00199-8
9.
Haller
,
G.
,
2002
, “
Lagrangian Coherent Structures From Approximate Velocity Data
,”
Phys. Fluids
,
14
(
6
), pp.
1851
1861
.10.1063/1.1477449
10.
Lekien
,
F.
,
Shadden
,
S. C.
, and
Marsden
,
J. E.
,
2007
, “
Lagrangian Coherent Structures in n-Dimensional Systems
,”
J. Math. Phys.
,
48
(6), p.
065404
.10.1063/1.2740025
11.
Inanc
,
T.
,
Shadden
,
S. C.
, and
Marsden
,
J. E.
,
2005
, “
Optimal Trajectory Generation in Ocean Flows
,”
Proceedings of American Control Conference
,
Portland, OR
, Jun. 8–10, pp.
674
679
.
12.
Shadden
,
S. C.
,
Lekien
,
F.
, and
Marsden
,
J. E.
,
2005
, “
Definition and Properties of Lagrangian Coherent Structures From Finite-Time Lyapunov Exponents in Two-Dimensional Aperiodic Flows
,”
Physica D
,
212
(3–4), pp.
271
304
.10.1016/j.physd.2005.10.007
13.
Bollt
,
E. M.
,
Billings
,
L.
, and
Schwartz
,
I. B.
,
2002
, “
A Manifold Independent Approach to Understanding Transport in Stochastic Dynamical Systems
,”
Physica D
,
173
(3–4), pp.
153
177
.10.1016/S0167-2789(02)00659-0
14.
Billings
,
L.
, and
Schwartz
,
I. B.
,
2008
, “
Identifying Almost Invariant Sets in Stochastic Dynamical Systems
,”
Chaos
,
18
(2), p.
023122
.10.1063/1.2929748
15.
Froyland
,
G.
, and
Dellnitz
,
M.
,
2003
, “
Detecting and Locating Near-Optimal Almost-Invariant Sets and Cycles
,”
SIAM J. Sci. Comput.
,
24
(6), pp.
1839
1863
.10.1137/S106482750238911X
16.
Froyland
,
G.
, and
Padberg
,
K.
,
2009
, “
Almost-Invariant Sets and Invariant Manifolds—Connecting Probabilistic and Geometric Descriptions of Coherent Structures in Flows
,”
Physica D
,
238
(16), pp.
1507
1523
.10.1016/j.physd.2009.03.002
17.
Froyland
,
G.
,
2005
, “
Statistically Optimal Almost-Invariant Sets
,”
Physica D
,
200
(3–4), pp.
205
219
.10.1016/j.physd.2004.11.008
18.
Chan
,
H. B.
,
Dykman
,
M. I.
, and
Stambaugh
,
C.
,
2008
, “
Switching-Path Distribution in Multidimensional Systems
,”
Phys. Rev. E
,
78
(5), p.
051109
.10.1103/PhysRevE.78.051109
19.
Dykman
,
M. I.
,
1990
, “
Large Fluctuations and Fluctuational Transitions in Systems Driven by Coloured Gaussian Noise: A High-Frequency Noise
,”
Phys. Rev. A
,
42
, pp.
2020
2029
.10.1103/PhysRevA.42.2020
20.
Dykman
,
M. I.
,
McClintock
,
P. V. E.
,
Smelyanski
,
V. N.
,
Stein
,
N. D.
, and
Stocks
,
N. G.
,
1992
, “
Optimal Paths and the Prehistory Problem for Large Fluctuations in Noise-Driven Systems
,”
Phys. Rev. Lett.
,
68
, pp.
2718
2721
.10.1103/PhysRevLett.68.2718
21.
Millonas
,
M.
, ed.,
1996
,
Fluctuations and Order: The New Synthesis
,
Springer-Verlag
, New York.
22.
Luchinsky
,
D. G.
,
McClintock
,
P. V. E.
, and
Dykman
,
M. I.
,
1998
, “
Analogue Studies of Nonlinear Systems
,”
Rep. Prog. Phys.
,
61
(8), pp.
889
997
.10.1088/0034-4885/61/8/001
23.
Billings
,
L.
,
Bollt
,
E. M.
, and
Schwartz
,
I. B.
,
2002
, “
Phase-Space Transport of Stochastic Chaos in Population Dynamics of Virus Spread
,”
Phys. Rev. Lett.
,
88
(23), p.
234101
.10.1103/PhysRevLett.88.234101
24.
Feynman
,
R. P.
, and
Hibbs
,
A. R.
,
1965
,
Quantum Mechanics and Path Integrals
,
McGraw-Hill, Inc.
, New York.
25.
Freidlin
,
M. I.
, and
Wentzell
,
A. D.
,
1984
,
Random Perturbations of Dynamical Systems
,
Springer-Verlag
, New York.
26.
Wentzell
,
A.
,
1976
, “
Rough Limit Theorems on Large Deviations for Markov Stochastic Processes, I
,”
Theor. Probab. Appl.
,
21
, pp.
227
242
.10.1137/1121030
27.
Hu
,
G.
,
1987
, “
Stationary Solution of Master-Equations in the Large-System-Size Limit
,”
Phys. Rev. A
,
36
(
12
), pp.
5782
5790
.10.1103/PhysRevA.36.5782
28.
Dykman
,
M. I.
,
Mori
,
E.
,
Ross
,
J.
, and
Hunt
,
P. M.
,
1994
, “
Large Fluctuations and Optimal Paths in Chemical-Kinetics
,”
J. Chem. Phys.
,
100
(
8
), pp.
5735
5750
.10.1063/1.467139
29.
Graham
,
R.
, and
Tél
,
T.
,
1984
, “
Existence of a Potential for Dissipative Dynamical Systems
,”
Phys. Rev. Lett.
,
52
(
1
), pp.
9
12
.10.1103/PhysRevLett.52.9
30.
Maier
,
R. S.
, and
Stein
,
D. L.
,
1993
, “
Escape Problem for Irreversible Systems
,”
Phys. Rev. E
,
48
(
2
), pp.
931
938
.10.1103/PhysRevE.48.931
31.
Hamm
,
A.
,
Tél
,
T.
, and
Graham
,
R.
,
1994
, “
Noise-Induced Attractor Explosions Near Tangent Bifurcations
,”
Phys. Lett. A
,
185
(
3
), pp.
313
320
.10.1016/0375-9601(94)90621-1
32.
Yang
,
H.
, and
Liu
,
Z.
,
1994
, “
Chaotic Transport in a Double Gyre Ocean
,”
Geophys. Rev. Lett.
,
21
(7), pp.
545
548
.10.1029/94GL00306
33.
Rom-Kedar
,
V.
,
Leonard
,
A.
, and
Wiggins
,
S.
,
1990
, “
An Analytical Study of Transport Mixing and Chaos in an Unsteady Vortical Flow
,”
J. Fluid Mech.
,
214
, pp.
347
394
.10.1017/S0022112090000167
34.
Schwartz
,
I. B.
,
Billings
,
L.
,
Dykman
,
M.
, and
Landsman
,
A.
,
2009
, “
Predicting Extinction Rates in Stochastic Epidemic Models
,”
J. Stat. Mech.: Theory Exp.
,
2009
, p.
P01005
.10.1088/1742-5468/2009/01/P01005
35.
Lindley
,
B. S.
, and
Schwartz
,
I. B.
,
2013
, “
An Iterative Action Minimizing Method for Computing Optimal Paths in Stochastic Dynamical Systems
,”
Physica D
,
255
, pp.
22
30
.10.1016/j.physd.2013.04.001
36.
Doedel
,
E. J.
,
Champneys
,
A. R.
,
Dercole
,
F.
,
Fairgrieve
,
T.
,
Kuznetsov
,
Y.
,
Oldeman
,
B.
,
Paffenroth
,
R.
,
Sandstede
,
B.
,
Wang
,
X.
, and
Zhang
,
C.
,
2008
, AUTO-07P: Continuation and Bifurcation Software for Ordinary Differential Equations, February, http://sourceforge.net/projects/auto-07p/
37.
Bryson
,
J. A. E.
, and
Ho
,
Y.-C.
,
1975
,
Applied Optimal Control: Optimization, Estimation and Control
,
Taylor and Francis
, Philadelphia, PA.
38.
Gardiner
,
C. W.
,
2004
,
Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences
,
Springer-Verlag
, New York.
You do not currently have access to this content.