In this paper, we consider a stochastic deployment problem, where a robotic swarm is tasked with the objective of positioning at least one robot at each of a set of pre-assigned targets while meeting a temporal deadline. Travel times and failure rates are stochastic but related, inasmuch as failure rates increase with speed. To maximize chances of success while meeting the deadline, a control strategy has therefore to balance safety and performance. Our approach is to cast the problem within the theory of constrained Markov decision processes (CMDPs), whereby we seek to compute policies that maximize the probability of successful deployment while ensuring that the expected duration of the task is bounded by a given deadline. To account for uncertainties in the problem parameters, we consider a robust formulation and we propose efficient solution algorithms, which are of independent interest. Numerical experiments confirming our theoretical results are presented and discussed.

References

References
1.
Bonabeau
,
E.
,
Dorigo
,
M.
, and
Theraulaz
,
G.
,
1999
,
Swarm Intelligence: From Natural to Artificial Systems
,
Oxford University
,
New York
, Vol.
4
.
2.
Bullo
,
F.
,
Cortés
,
J.
, and
Martínez
,
S.
,
2009
,
Distributed Control of Robotic Networks
,
Princeton University Press, Princeton
, NJ.
3.
Pavlic
,
T.
, and
Passino
,
K.
,
2009
, “
Foraging Theory for Autonomous Vehicle Speed Choice
,”
Eng. Appl. Artif. Intell.
,
22
(
3
), pp.
482
489
.10.1016/j.engappai.2008.10.017
4.
Cortes
,
J.
,
Martinez
,
S.
,
Karatas
,
T.
, and
Bullo
,
F.
,
2004
, “
Coverage Control for Mobile Sensing Networks
,”
IEEE Trans. Rob. Autom.
,
20
(
2
), pp.
243
255
.10.1109/TRA.2004.824698
5.
Schwager
,
M.
,
McLurkin
,
J.
, and
Rus
,
D.
,
2006
, “
Distributed Coverage Control With Sensory Feedback for Networked Robots
,”
Proceedings of the Robotics: Science and Systems
Conference, pp.
49
56
.
6.
Morlok
,
R.
, and
Gini
,
M.
,
2004
, “
Dispersing Robots in an Unknown Environment
,”
Proceedings of the International Symposium on Distributed Autonomous Robotic Systems
, Springer, Tokyo, pp.
253
262
.
7.
Pearce
,
J.
,
Rybski
,
P.
,
Stoeter
,
S.
, and
Papanilolopoulos
,
N.
,
2003
, “
Dispersion Behaviors for a Team of Multiple Miniature Robots
,”
Proceedings of the IEEE International Conference on Robotics and Automation
, Taiwan, pp.
1158
1163
.
8.
Purohit
,
A.
,
Zhang
,
P.
,
Sadler
,
B.
, and
Carpin
,
S.
,
2014
, “
Deployment of Swarms of Micro-Aerial Vehicles: From Theory to Practice
,”
Proceedings of the IEEE International Conference on Robotics and Automation
Hong Kong, pp.
5408
5413
.
9.
Pavone
,
M.
,
Arsie
,
A.
,
Frazzoli
,
E.
, and
Bullo
,
F.
,
2011
, “
Distributed Algorithms for Environment Partitioning in Mobile Robotic Networks
,” Hong Kong,
IEEE Trans. Autom. Control
,
56
(
8
), pp.
1834
1848
.10.1109/TAC.2011.2112410
10.
Carpin
,
S.
,
Chung
,
T.
, and
Sadler
,
B.
,
2013
, “
Theoretical Foundations of High-Speed Robot Team Deployment
,”
Proceedings of the IEEE International Conference on Robotics and Automation
, Karlsruhe, Germany, pp.
2025
2032
.
11.
Kloetzer
,
M.
, and
Belta
,
C.
,
2007
, “
Temporal Logic Planning and Control of Robotic Swarms by Hierarchical Abstractions
,”
IEEE Trans. Rob.
,
23
(
2
), pp.
320
330
.10.1109/TRO.2006.889492
12.
Ding
,
X.
,
Kloetzer
,
M.
,
Chen
,
Y.
, and
Belta
,
C.
,
2011
, “
Automatic Deployment of Robotic Teams
,”
IEEE Rob. Autom. Mag.
,
18
(
3
), pp.
75
86
.10.1109/MRA.2011.942117
13.
Batalin
,
M.
, and
Sukhatme
,
G.
,
2007
, “
The Design and Analysis of an Efficient Local Algorithm for Coverage and Exploration Based on Sensor Network Deployment
,”
IEEE Trans. Rob.
,
23
(
4
), pp.
661
675
.10.1109/TRO.2007.903809
14.
Fink
,
J.
,
Ribeiro
,
A.
, and
Kumar
,
V.
,
2013
, “
Robust Control of Mobility and Communications in Autonomous Robot Teams
,”
IEEE Access
,
1
, pp.
290
309
.10.1109/ACCESS.2013.2262013
15.
Matignon
,
L.
,
Jeanpierre
,
L.
, and
Mouaddib
,
A.
,
2012
, “
Coordinated Multi-Robot Exploration Under Communication Constraints Using Decentralized Markov Decision Processes
,”
Proceedings of the AAAI Conference on Artificial Intelligence
, Toronto, Canada, pp.
2017
2023
.
16.
Ding
,
X.
,
Pinto
,
A.
, and
Surana
,
A.
,
2013
, “
Strategic Planning Under Uncertainties Via Constrained Markov Decision Processes
,”
Proceedings of the IEEE International Conference on Robotics and Automation
,
Karlsruhe, Germany,
, pp.
4568
4575
.
17.
Napp
,
N.
, and
Klavins
,
E.
,
2011
, “
A Compositional Framework for Programming Stochastically Interacting Robots
,”
Int. J. Rob. Res.
,
30
(
6
), pp.
713
729
.10.1177/0278364911403018
18.
Altman
,
E.
,
1996
, “
Constrained Markov Decision Processes With Total Cost Criteria: Occupation Measures and Primal LP
,”
Math. Methods Oper. Res.
,
43
(
1
), pp.
45
72
.10.1007/BF01303434
19.
Bertsekas
,
D.
,
2005
,
Dynamic Programming and Optimal Control
,
Athena Scientific
, Belmont, MA, Vol. 1–2.
20.
Puterman
,
M.
,
1994
,
Markov Decision Processes – Discrete Stochastic Dynamic Programming
,
Wiley-Interscience
, Hoboken, NJ.
21.
Altman
,
E.
,
1999
,
Constrained Markov Decision Processes
(Stochastic Modeling),
Chapman & Hall/CRC
, Boca Raton, FL.
22.
Ben-Tal
,
A.
,
El Ghaoui
,
L.
, and
Nemirovski
,
A.
,
2009
,
Robust Optimization
,
Princeton University
, Princeton, NJ.
23.
Bertsimas
,
D.
, and
Sim
,
M.
,
2003
, “
Robust Discrete Optimization and Network Flows
,”
Math. Program.
,
98
(
1–3
), pp.
49
71
.10.1007/s10107-003-0396-4
24.
Rausand
,
M.
, and
Høyland
,
A.
,
2004
,
System Reliability Theory: Models, Statistical Methods, and Applications
,
Wiley
, Hoboken, NJ, Vol.
396
.
25.
Purohit
,
A.
, and
Zhang
,
P.
,
2011
, “
Controlled-Mobile Sensing Simulator for Indoor Fire Monitoring
,”
Proceedings of the Wireless Communications and Mobile Computing Conference
, Istanbul, Turkey, pp.
1124
1129
.
26.
Kumar
,
V.
, and
Michael
,
N.
,
2012
. “
Opportunities and Challenges With Autonomous Micro Aerial Vehicles
,”
Int. J. Rob. Res.
,
31
(
11
), pp.
1279
1291
.10.1177/0278364912455954
27.
Kushleyev
,
A.
,
Mellinger
,
D.
, and
Kumar
,
V.
,
2012
, “
Towards a Swarm of Agile Micro Quadrotors
,”
Autonomous Robots
,
35
(
4
), pp.
287
300
.10.1007/s10514-013-9349-9
28.
Mellinger
,
D.
,
Michael
,
N.
, and
Kumar
,
V.
,
2012
, “
Trajectory Generation and Control for Precise Aggressive Maneuvers With Quadrotors
,”
Int. J. Rob. Res.
,
31
(
5
), pp.
664
674
.10.1177/0278364911434236
29.
Nesterov
,
Y.
,
Nemirovskii
,
A.
, and
Ye
,
Y.
,
1994
,
Interior-Point Polynomial Algorithms in Convex Programming
,
Society for Industrial and Applied Mathematics
, Philadelphia, PA, Vol.
13
.
30.
Luenberger
,
D.
,
2003
,
Linear and Nonlinear Programming
,
Kluwer Academic Press
, Boston, MA.
You do not currently have access to this content.