There is a great importance for faithful reduced order models (ROMs) that are valid over a range of system parameters and initial conditions. In this paper, we demonstrate through two nonlinear dynamic models (pinned–pinned beam and thin plate) that are both randomly and periodically forced that smooth orthogonal decomposition (SOD)-based ROMs are valid over a wide operating range of system parameters and initial conditions when compared to proper orthogonal decomposition (POD)-based ROMs. Two new concepts of subspace robustness—the ROM is valid over a range of initial conditions, forcing functions, and system parameters—and dynamical consistency—the ROM embeds the nonlinear manifold—are used to show that SOD, as opposed to POD, can capture the low order dynamics of a particular system even if the system parameters or initial conditions are perturbed from the design case.

References

References
1.
Chatterjee
,
A.
,
2000
, “
An Introduction to the Proper Orthogonal Decomposition
,”
Curr. Sci.
,
78
(
7
), pp.
808
817
.
2.
Liang
,
Y. C.
,
Lee
,
H. P.
,
Lim
,
S. P.
,
Lin
,
W. Z.
,
Lee
,
K. H.
, and
Wu
,
C. G.
,
2002
, “
Proper Orthogonal Decomposition and Its Applications—Part I: Theory
,”
J. Sound Vib.
,
252
(
3
), pp.
527
544
.10.1006/jsvi.2001.4041
3.
Feeny
,
B. F.
, and
Kappagantu
,
R.
,
1998
, “
On the Physical Interpretation of Proper Orthogonal Modes in Vibrations
,”
J. Sound Vib.
,
211
(
4
), pp.
607
616
.10.1006/jsvi.1997.1386
4.
Volkwein
,
S.
,
2008
, “
Model Reduction Using Proper Orthogonal Decomposition, Lecture Notes
,” Institute of Mathematics and Scientific Computing, University of Graz, Graz, Austria.
5.
Kershen
,
G.
,
Poncelet
,
F.
, and
Golinval
,
J.
,
2007
, “
Physical Interpretation of Independent Component Analysis in Structural Dynamics
,”
Mech. Syst. Signal Process.
,
21
(
4
), pp.
1567
1575
.
6.
Feeny
,
B.
,
2002
, “
On the Proper Orthogonal Modes and Normal Modes of a Continuous Vibration System
,”
J. Sound Vib.
,
124
(
1
), pp.
157
160
.
7.
Shlens
,
J.
,
2005
, A Tutorial on Principal Component Analysis, Institute for Nonlinear Science, University of California, San Diego, La Jolla, CA.
8.
Berkooz
,
G.
,
Holmes
,
P.
, and
Lumley
,
J. L.
,
1993
, “
The Proper Orthogonal Decomposition in the Analysis of Turbulent Flows
,”
Annuals Rev. Fluid Mech.
,
25
(
1
), pp.
539
575
.10.1146/annurev.fl.25.010193.002543
9.
Rega
,
G.
, and
Troger
,
H.
,
2005
, “
Dimension Reduction of Dynamical Systems: Methods, Models, Applications
,”
Nonlinear Dyn.
,
41
(
1–3
), pp.
1
15
.10.1007/s11071-005-2790-3
10.
Shaw
,
S.
, and
Pierre
,
C.
,
1994
, “
Normal Modes of Vibration for Non-Linear Continuous Systems
,”
J. Sound Vib.
,
169
(
3
), pp.
319
347
.10.1006/jsvi.1994.1021
11.
Shaw
,
S.
, and
Pierre
,
C.
,
1991
, “
Non-Linear Normal Modes and Invariant Manifolds
,”
J. Sound Vib.
,
150
(
1
), pp.
170
173
.10.1016/0022-460X(91)90412-D
12.
Shaw
,
S.
, and
Pierre
,
C.
,
1993
, “
Normal Modes for Non-Linear Vibratory Systems
,”
J. Sound Vib.
,
164
(
1
), pp.
85
124
.10.1006/jsvi.1993.1198
13.
Vakakis
,
A.
,
1997
, “
Non-Linear Normal Modes (NNMS) and Their Application in Vibration Theory: An Overview
,”
Mech. Syst. Signal Process.
,
11
(
1
), pp.
3
22
.10.1006/mssp.1996.9999
14.
Chelidze
,
D.
, and
Liu
,
M.
,
2005
, “
Dynamical Systems Approach to Fatigue Damage Identification
,”
J. Sound Vib.
,
281
(
3–5
), pp.
887
904
.10.1016/j.jsv.2004.02.017
15.
Chelidze
,
D.
, and
Liu
,
M.
,
2008
, “
Reconstructing Slow-Time Dynamics From Fast-Time Measurements
,”
Philos. Trans. R. Soc. A
,
366
(
1866
), pp.
729
3087
.10.1098/rsta.2007.2124
16.
Chelidze
,
D.
, and
Cusumano
,
J. P.
,
2006
, “
Phase Space Warping: Nonlinear Time Series Analysis for Slowly Drifting Systems
,”
Philos. Trans. R. Soc. A
,
364
(
1846
), pp.
2495
2513
.10.1098/rsta.2006.1837
17.
Chelidze
,
D.
,
2004
, “
Identifying Multidimensional Damage in a Hierarchical Dynamical System
,”
Nonlinear Dyn.
,
310
(
4
), pp.
307
322
.10.1023/B:NODY.0000045546.02766.ad
18.
Chelidze
,
D.
, and
Zhou
,
W.
,
2006
, “
Smooth Orthogonal Decomposition Based Modal Analysis
,”
J. Sound Vib.
,
292
(
3–5
), pp.
461
473
.10.1016/j.jsv.2005.08.006
19.
Farooq
,
U.
, and
Feeny
,
B.
,
2008
, “
Smooth Orthogonal Decomposition for Modal Analysis of Randomly Excited Systems
,”
J. Sound Vib.
,
316
(
1–5
), pp.
137
146
.10.1016/j.jsv.2008.02.052
20.
Chelidze
,
D.
,
2013
, “
Smooth Robust Subspace Based Model Reduction
,”
ASME
Paper No. DETC2013-13333.10.1115/DETC2013-13333
21.
Chelidze
,
D.
,
2009
, “
Nonlinear Normal Mode Embedding for Model Reduction
,” Euromech Colloquium 503: Nonlinear Normal Modes, Model Reduction and Localization, Frascati, Sept. 27–Oct. 2.
22.
Segala
,
D.
, and
Chelidze
,
D.
,
2013
, “
Robust and Dynamically Consistent Reduced Order Models
,”
ASME
Paper No. IMECE2013-62522. 10.1115/IMECE2013-62522
23.
Rathinam
,
M.
, and
Petzold
,
L. R.
,
2003
, “
A New Look at Proper Orthogonal Decomposition
,”
J. Numer. Anal.
,
41
(
5
), pp.
1893
1925
.10.1137/S0036142901389049
24.
Kennel
,
M.
,
Brown
,
R.
, and
Abarbanel
,
H.
,
1992
, “
Determining Embedding Dimension for Phase-Space Reconstruction Using a Geometrical Construction
,”
Phys. Rev. A
,
45
(
6
), pp.
3403
3411
.10.1103/PhysRevA.45.3403
You do not currently have access to this content.