Developed in this paper is the notion that the collective behavior of swarms can be achieved without explicit peer-to-peer communication among agents. It is based on a recently proposed continuum framework for studying swarms where homogeneous maps are the key. The paper focuses on 2D evolution of a multi-agent system (MAS) that consists of N agents with Nl leaders at the two ends of m lines called leading segments, that are on the boundary of a moving convex domain Ωt. Rest of the (N-Nl) agents, the followers, are distributed along the m leading segments while lying inside the convex domain Ωt. Every follower i is initially located at the intersection of two line segments whose end points define four agents that are adjacent to i. Under this setup if the domain Ωt is transformed under a homogenous mapping and if every follower agent moves in such a way to reach the point of intersection of the two line segments connecting the adjacent agents, then the final formation of the MAS will satisfy the same homogenous map. This alignment strategy has the distinct advantage that the followers do not need the exact positions of the adjacent local agents to stay aligned.

References

References
1.
Murray
,
R. M.
,
2007
, “
Recent Research in Cooperative Control of Multi-Vehicle Systems
,”
ASME J. Dyn. Syst., Meas., Control
,
129
(
5
), pp.
571
583
.10.1115/1.2766721
2.
Shi-Cai
,
L.
,
Da-Long
,
T.
, and
Guang-Jun
,
L.
,
2007
, “
Robust Leader-Follower Formation Control of Mobile Robots Based on a Second Order Kinematics Model
,”
Acta Autom. Sin.
,
33
(
9
), pp.
947
955
.10.1360/aas-007-0947
3.
Consolinia
,
L.
,
Morbidib
,
F.
,
Prattichizzob
,
D.
, and
Tosques
,
M.
,
2008
, “
Leader–Follower Formation Control of Nonholonomic Mobile Robots With Input Constraints
,”
Automatica
,
44
(
5
), pp.
1343
1349
.10.1016/j.automatica.2007.09.019
4.
Mariottini
,
G. L.
,
Morbidi
,
F.
,
Prattichizzo
,
D.
,
Vander Valk
,
N.
,
Michael
,
N.
,
Pappas
,
G.
, and
Daniilidis
,
K.
,
2009
, “
Vision-Based Localization for Leader–Follower Formation Control
,”
IEEE Trans. Rob.
,
25
(
6
), pp.
1431
1438
.10.1109/TRO.2009.2032975
5.
Ren
,
W.
, and
Beard
,
R. W.
,
2004
, “
Formation Feedback Control for Multiple Spacecraft Via Virtual Structures
,”
IEE Proc.-A: Sci., Meas. Technol.
,
151
(
3
), pp.
357
368
.10.1049/ip-cta:20040484(410)151
6.
Wang
,
Sh.
, and
Schuab
,
H.
,
2011
, “
Nonlinear Feedback Control of a Spinning Two-Spacecraft Coulomb Virtual Structure
,”
IEEE Trans. Aerosp. Electron. Syst.
,
47
(
3
), pp.
2055
2067
.10.1109/TAES.2011.5937282
7.
Li
,
Q.
, and
Jiang
,
Zh. P.
,
2008
, “
Formation Tracking Control of Unicycle Teams With Collision Avoidance
,”
IEEE
Conference on Decision and Control
,
Cancun, Mexico
, Dec. 9–11, pp.
496
501
.10.1109/CDC.2008.4738901
8.
Gerdes
,
J. C.
, and
Rossetter
,
E. J.
,
1999
, “
A Unified Approach to Driver Assistance Systems Based on Artificial Potential Fields
,”
ASME J. Dyn. Syst. Meas. Control
,
123
(
3
), pp.
431
438
.10.1115/1.1386788
9.
Gazi
,
V.
, and
Passino
,
K. M.
,
2011
,
Swarm Stability and Optimization
,
Springer
,
New York
.
10.
Balch
,
T.
, and
Arkin
,
R. C.
,
1998
, “
Behavior-Based Formation Control for Multirobot Teams
,”
IEEE Trans. Rob. Autom.
,
14
(
6
), pp.
926
939
.10.1109/70.736776
11.
Liu
,
B.
,
Zhang
,
R.
, and
Shi
,
C.
,
2006
, “
Formation Control of Multiple Behavior-Based Robots
,”
International Conference on Computational Intelligence and Security
,
Guangzhou, China
, Nov., pp.
544
547
.10.1109/ICCIAS.2006.294194
12.
Ghods
,
N.
, and
Krstic
,
M.
,
2012
, “
Multi Agent Deployment Over a Source
,”
IEEE Trans. Control Syst. Technol.
,
20
(
1
), pp.
277
285
.10.1109/TCST.2011.2104959
13.
Frihauf
,
P.
, and
Krstic
,
M.
,
2011
, “
Leader-Enabled Deployment Onto Planar Curves: A PDE-Based Approach
,”
IEEE Trans. Autom. Control
,
56
(
8
), pp.
1791
1806
.10.1109/TAC.2010.2092210
14.
Frihauf
,
P.
, and
Krstic
,
M.
,
2010
, “
Multi-Agent Deployment to a Family of Planar Arcs
,”
American Control Conference
, Marriott Waterfront,
Baltimore, MD
, June 30–July 2, pp.
4109
4114
.10.1109/ACC.2010.5530623
15.
Kim
,
J.
,
Kim
,
K. D.
,
Natarajan
,
V.
,
Kelly
,
S. D.
, and
Bentsman
,
J.
,
2008
, “
PDE-Based Model Reference Adaptive Control of Uncertain Heterogeneous Multi Agent Networks
,”
Nonlinear Anal.: Hybrid Syst.
2
(
4
), pp.
1152
1167
.10.1016/j.nahs.2008.09.008
16.
Rastgoftar
,
H.
, and
Jayasuriya
,
S.
,
2012
, “
Planning and Control of Swarm Motion as Deformable Body
,”
ASME
Paper No. DSCC2012-MOVIC2012-8831
.10.1115/DSCC2012-MOVIC2012-8831
17.
Rastgoftar
,
H.
, and
Jayasuriya
,
S.
,
2014
, “
Evolution of Multi Agent Systems as Continua
,”
ASME J. Dyn. Syst. Meas. Control
,
136
(
4
), p. 041014.10.1115/1.4026659
18.
Rastgoftar
,
H.
, and
Jayasuriya
,
S.
,
2013
, “
Planning and Control of Swarm Motions as Continua
,” University of Central Florida, Online Collection, Orlando, FL, http://ucf.catalog.fcla.edu/cf.jsp?st=rastgoftar&ix=kw&S=0311390934586915&fl=bo
19.
Rastgoftar
,
H.
, and
Jayasuriya
,
S.
,
2013
, “
Distributed Control of Swarm Motions as Continua Using Homogeneous Maps and Agent Triangulation
,”
European Control Conference
,
Zurich, Switzerland
, July 17–19, pp.
2824
2830
.
20.
Rastgoftar
,
H.
, and
Jayasuriya
,
S.
,
2013
, “
Multi-Agent Deployment Based on Homogenous Maps and a Special Inter-Agent Communication Protocol
,” 6th
IFAC
Symposium on Mechatronic Systems, (Mechatronics '13),
Hangzhou, China
, Apr. 10–12.10.3182/20130410-3-CN-2034.00100
21.
Rastgoftar
,
H.
, and
Jayasuriya
,
S.
,
2013
, “
Preserving Stability under Communication Delays in Multi Agent Systems
,”
ASME
Paper No. DSCC2013-3812
.10.1115/DSCC2013-3812
22.
Rastgoftar
,
H.
, and
Jayasuriya
,
S.
,
2014
, “
Continuum Evolution of Multi Agent Systems Under a Polyhedral Communication Topology
,”
American Control Conference
,
Portland, OR
.
23.
Rastgoftar
,
H.
, and
Jayasuriya
,
S.
,
2014
, “
Evolution of Multi Agent Systems as Particles of a Deformable Body Under a Polyhedral Communication Topology
,”
American Control Conference
,
Portland, OR
, June 4–6, pp.
5115
5120
.10.1109/ACC.2014.6859293
24.
Rastgoftar
,
H.
, and
Jayasuriya
,
S.
,
2014
, “
Continuum Evolution of a System of Agents With Finite Size
,”
IFAC World Congress
,
Cape town, South Africa
, Aug. 24–29.
You do not currently have access to this content.