In this article, an algorithm has been developed to search and localize a radio target in a marine area. This algorithm consists of two main parts, estimation and guidance. In the estimation part, bootstrap filtering has been employed to extract the target states from measurements. Although, by utilizing bootstrap filter, the target states can be estimated without requiring special maneuvers, exploiting proper guidance law to maximize the information gain can significantly enhance the localization performance. For evaluating the developed algorithm, an accurate simulation software with six degrees of freedom mathematical model including autopilot is used. Obtained statistical results from different simulation runs for both stationary and moving targets are presented to demonstrate the performance of the developed algorithm.

References

References
1.
Esmailifar
,
S.
, and
Saghafi
,
F.
,
2014
, “
Development and Stability Analysis of a Cooperative Search Algorithm by Multiple Flying Vehicles
,”
Proc. IMechE G
,
228
(7), pp.
1058
1075
.10.1177/0954410013484110
2.
Shima
,
T.
, and
Rasmussen
,
S. J.
,
2009
,
UAV Cooperative Decision and Control
,
SIAM
,
Philadelphia, PA
.
3.
Tisdale
,
J.
,
Kim
,
Z.
, and
Hedrick
,
J. K.
,
2008
, “
An Autonomous System for Cooperative Search and Localization Using Unmanned Vehicles
,”
AIAA Guidance, Navigation and Control Conference and Exhibit
, Honolulu, HI, Aug. 18–21.
4.
Hu
,
J.
,
Xie
,
L.
, and
Lum
,
K.-y.
,
2012
, “
Multiagent Information Fusion and Cooperative Control in Target Search
,”
IEEE Trans. Control Syst. Technol.
,
21
(4), pp.
1223
1235
.10.1109/TCST.2012.2198650
5.
Tisdale
,
J.
,
Kim
,
Z.
, and
Hedrick
,
J. K.
,
2009
, “
Autonomous Path Planning and Estimation Using UAVs
,”
IEEE Rob. Autom. Mag.
,
16
(2), pp.
35
42
.10.1109/MRA.2009.932529
6.
Barber
,
D. B.
,
Redding
,
J. D.
,
McLain
,
T. W.
,
Beard
,
R. W.
, and
Taylor
,
C. N.
,
2006
, “
Vision-Based Target Geo-Location Using a Fixed-Wing Miniature Air Vehicle
,”
J. Intell. Rob. Syst.
,
47
(
4
), pp.
361
382
.10.1007/s10846-006-9088-7
7.
Ivey
,
G. F.
, and
Johnson
,
E. N.
,
2005
, “
Investigation of Methods for Target State Estimation Using Vision Sensors
,”
AIAA Guidance, Navigation, and Control Conference and Exhibit
, San Francisco, CA, Aug. 15–18.
8.
Ivey
,
G. F.
, and
Johnson
,
E.
,
2006
, “
Investigation of Methods for Simultaneous Localization and Mapping Using Vision Sensors
,”
Proceedings of the AIAA Guidance, Navigation, and Control Conference
, Keystone, CO, Aug. 21–24.
9.
Ponda
,
S. S.
,
Kolacinski
,
R. M.
, and
Frazzoli
,
E.
,
2009
, “
Trajectory Optimization for Target Localization Using Small Unmanned Aerial Vehicles
,” Master's thesis, Massachusetts Institute of Technology, Cambridge, MA.
10.
Leykin
,
A.
,
Ran
,
Y.
, and
Hammoud
,
R.
,
2007
, “
Thermal-Visible Video Fusion for Moving Target Tracking and Pedestrian Classification
,”
IEEE Conference on Computer Vision and Pattern Recognition
, Minneapolis, MN, June 17–22, pp.
1
8
.
11.
Xu
,
J.
,
Chen
,
J.
,
Dou
,
L.
, and
Liu
,
Z.
,
2010
, “
Moving Target Detection and Tracking in FLIR Image Sequences Based on Thermal Target Modeling
,”
International Conference on Measuring Technology and Mechatronics Automation
, Vol.
2
, IEEE, Changsha City, China, Mar. 13–14, pp.
715
720
.
12.
Mandic
,
M.
, and
Frazzoli
,
E.
,
2007
, “
Efficient Sensor Coverage for Acoustic Localization
,”
46th IEEE Conference on Decision and Control
, New Orleans, LA, Dec. 12–14, pp.
3597
3602
.
13.
Bar-Shalom
,
Y.
,
Li
,
X. R.
, and
Kirubarajan
,
T.
,
2001
,
Estimation With Applications to Tracking and Navigation
,
John Wiley & Sons
, New York.
14.
Ristic
,
B.
,
Arulampalam
,
S.
, and
Gordon
,
N.
,
2004
,
Beyond the Kalman Filter Particle Filters for Tracking Applications
,
Artech House
, Boston, MA.
15.
Bergman
,
N.
,
1999
, “
Recursive Bayesian Estimation Navigation and Tracking Applications
,” Ph.D. thesis, Linkoping University, Linkoping, Sweden.
16.
Bourgault
,
F.
,
Furukawa
,
T.
, and
Durrant-Whyte
,
H. F.
,
2006
, “
Optimal Search for a Lost Target in a Bayesian World
,”
Field and Service Robotics
,
Springer
,
Berlin, Heidelberg
, pp.
209
222
.
17.
Bourgault
,
F.
,
Furukawa
,
T.
, and
Durrant-Whyte
,
H. F.
,
2004
, “
Process Model, Constraints, and the Coordinated Search Strategy
,”
Proceedings of IEEE International Conference on Robotics and Automation
, New Orleans, LA, Apr. 26–May 1, pp.
5256
5261
.
18.
Crassidis
,
J. L.
, and
Junkins
,
J. L.
,
2004
,
Optimal Estimation of Dynamic Systems
,
Chapman & Hall
, London.
19.
Lavis
,
B.
,
Furukawa
,
T.
, and
Durrant Whyte
,
H. F.
,
2008
, “
Dynamic Space Reconfiguration for Bayesian Search and Tracking With Moving Targets
,”
Auton. Rob.
,
24
(
4
), pp.
387
399
.10.1007/s10514-007-9081-4
20.
Posch
,
A.
, and
Sukkarieh
,
S.
,
2009
, “
UAV Based Search for a Radio Tagged Animal Using Particle Filters
,”
Australasian Conference on Robotics and Automation (ACRA)
, Sydney, Australia, Dec. 2–4.
21.
Ryan
,
A.
,
2008
, “
Information-Theoretic Tracking Control Based on Particle Filter Estimate
,”
Proceedings of the AIAA Guidance, Navigation, and Control Conference
, Honolulu, HI, Aug. 18–21.
22.
Wan
,
E.
, and
Merwe
,
R. V. D.
,
2000
, “
The Unscented Kalman Filter for Nonlinear Estimation
,”
Adaptive Systems for Signal Processing, Communications, and Control Symposium
, Lake Louise, Alta, Oct. 1–Oct. 4.
23.
MartíNez
,
S.
, and
Bullo
,
F.
,
2006
, “
Optimal Sensor Placement and Motion Coordination for Target Tracking
,”
Automatica
,
42
(
4
), pp.
661
668
.10.1016/j.automatica.2005.12.018
24.
Kwon
,
H.
, and
Pack
,
D.
,
2012
, “
Robust Tracking of Nonlinear Target Motion Using Out-of-Order Sigma Point Kalman Filters
,”
AIAA
Paper No. 2012-2525, pp.
1
7
.10.2514/6.2012-2525
25.
Macwan
,
A.
,
Nejat
,
G.
, and
Benhabib
,
B.
,
2011
, “
Target-Motion Prediction for Robotic Search and Rescue in Wilderness Environments
,”
IEEE Trans. Syst. Man Cybern., B
,
41
(
5
), pp.
1287
1298
.10.1109/TSMCB.2011.2132716
26.
Mihaylova
,
L.
,
Lefebvre
,
T.
,
Bruyninckx
,
H.
,
Gadeyne
,
K.
, and
De Schutter
,
J.
,
2003
, “
A Comparison of Decision Making Criteria and Optimization Methods for Active Robotic Sensing
,”
Numerical Methods and Applications
,
Springer
, Berlin, Heidelberg, pp.
316
324
.
27.
Li
,
X. R.
,
Pitre
,
R. R.
,
Jilkov
,
V. P.
, and
Chen
,
H.
,
2009
, “
A New Performance Metric for Search and Track Missions
,”
12th International Conference on Information Fusion
,
Seattle
,
WA
, July 6–9, pp.
1100
1107
.
28.
Pitre
,
R.
,
Li
,
X.
, and
DelBalzo
,
D.
,
2009
, “
A New Performance Metric for Search and Track Missions 2: Design and Application to UAV Search
,”
12th International Conference on Information Fusion
,
Seattle
,
WA
, July 6–9, pp.
1108
1114
.
29.
Stachura
,
M.
, and
Frew
,
E. W.
,
2011
, “
Cooperative Target Localization With a Communication-Aware Unmanned Aircraft System
,”
J. Guidance Control Dyn.
,
34
(
5
), pp.
1352
1362
.10.2514/1.51591
30.
Wise
,
R. A.
, and
Rysdyk
,
R. T.
,
2006
, “
UAV Coordination for Autonomous Target Tracking
,”
Proceedings of the AIAA Guidance, Navigation, and Control Conference
, Keystone, CO, Aug. 21–24, pp.
3210
3231
.
31.
Arulampalam
,
M.
,
Maskell
,
S.
,
Gordon
,
N.
, and
Clapp
,
T.
,
2002
, “
A Tutorial on Particle Filters for Online Nonlinear/Non-Gaussian Bayesian Tracking
,”
IEEE Trans. Signal Process.
,
50
(
2
), pp.
174
188
.10.1109/78.978374
32.
Tichavsky
,
P.
,
Muravchik
,
C. H.
, and
Nehorai
,
A.
,
1998
, “
Posterior Cramér-Rao Bounds for Discrete-Time Nonlinear Filtering
,”
IEEE Trans. Signal Process.
,
46
(
5
), pp.
1386
1396
.10.1109/78.668800
33.
Zipfel
,
P. H.
,
2007
,
Modeling and Simulation of Aerospace Vehicle Dynamics
,
2nd ed.
,
American Institute of Aeronautics and Astronautics
,
Reston, VA
.
34.
Ogata
,
K.
,
1997
,
Modern Control Engineering
,
3rd ed.
,
Prentice-Hall
, London.
35.
Department of Defence,
1997
, World Geodetic System 1984, “Its Definition and Relationships With Local Geodetic Systems, 3rd ed.,” Committee, NIMA WGS 84 Update, St. Louis, MO.
You do not currently have access to this content.