This paper presents a novel three-stage control strategy for the motion control of an underactuated three-link passive–active–active (PAA) manipulator. First, a nonlinear control law is designed to make the angle and angular velocity of the third link convergent to zero. Then, a swing-up control law is designed to increase the system energy and control the posture of the second link. Finally, an integrated method with linear control and nonlinear control is introduced to stabilize the manipulator at the straight-up position. The stability of the control system is guaranteed by Lyapunov theory and LaSalle’s invariance principle. Compared to other approaches, the proposed strategy innovatively introduces a preparatory stage to drive the third link to stretch-out toward the second link in a natural way, which makes the swing-up control easy and quick. Besides, the intergraded method ensures the manipulator moving into the balancing stage smoothly and easily. The effectiveness and efficiency of the control strategy are demonstrated by numerical simulations.

References

References
1.
Muske
,
K. R.
,
Ashrafiuon
,
H.
,
Nersesov
,
S.
, and
Nikkhah
,
M.
,
2012
, “
Optimal Sliding Mode Cascade Control for Stabilization of Underactuated Nonlinear Systems
,”
ASME J. Dyn. Syst. Meas. Control
,
134
(
2
), p.
021020
.10.1115/1.4005367
2.
Sankaranarayanan
,
V.
, and
Mahindrakar
,
A. D.
,
2009
, “
Control of a Class of Underactuated Mechanical Systems Using Sliding Modes
,”
IEEE Trans. Rob.
,
25
(
2
), pp.
459
467
.10.1109/TRO.2008.2012338
3.
Zhu
,
D.
,
Zhou
,
J.
,
Teo
,
K. L.
, and
Zhou
,
D.
,
2012
, “
Synchronization Control for a Class of Underactuated Mechanical Systems via Energy Shaping
,”
ASME J. Dyn. Syst. Meas. Control
,
134
(
4
), p.
041007
.10.1115/1.4006073
4.
Lai
,
X.-Z.
,
Pan
,
C.-Z.
,
Wu
,
M.
,
She
,
J.-H.
, and
Yang
,
S. X.
,
2012
, “
Robust Stabilization and Disturbance Attenuation for a Class of Underactuated Mechanical Systems
,”
J. Cent. South Univ.
,
19
(
9
), pp.
2488
2495
.10.1007/s11771-012-1301-1
5.
Sun
,
N.
, and
Fang
,
Y.
,
2012
, “
New Energy Analytical Results for the Regulation of Underactuated Overhead Cranes: An End-Effector Motion-Based Approach
,”
IEEE Trans. Ind. Electron.
,
59
(
12
), pp.
4723
4734
.10.1109/TIE.2012.2183837
6.
Xin
,
X.
, and
Liu
,
Y.
,
2013
, “
A Set-Point Control for a Two-Link Underactuated Robot With a Flexible Elbow Joint
,”
ASME J. Dyn. Syst. Meas. Control
,
135
(
5
), p.
051016
.10.1115/1.4024427
7.
Sankaranarayanan
,
V.
,
Mahindrakar
,
A. D.
, and
Banavar
,
R. N.
,
2008
, “
A Switched Controller for an Underactuated Underwater Vehicle
,”
Commun. Nonlinear Sci. Numer. Simul.
,
13
(
10
), pp.
2266
2278
.10.1016/j.cnsns.2007.07.004
8.
Henmi
,
T.
,
Deng
,
M.
, and
Inoue
,
A.
,
2006
, “
Swing-Up Control of the Acrobot Using a New Partial Linearization Controller Based on the Lyapunov Theorem
,”
Proceedings of the IEEE International Conference on Networking, Sensing and Control
,
Ft. Lauderdale, FL
, April 23–25, pp.
60
65
.
9.
Lai
,
X.
,
She
,
J.
,
Ohyama
,
Y.
, and
Cai
,
Z.
,
1999
, “
Fuzzy Control Strategy for Acrobots Combining Model-Free and Model-Based Control
,”
IEEE Proc. Control Theory Appl.
,
146
(
6
), pp.
505
510
.10.1049/ip-cta:19990749
10.
Albahkali
,
T.
,
Mukherjee
,
R.
, and
Das
,
T.
,
2009
, “
Swing-Up Control of the Pendubot: An Impulse–Momentum Approach
,”
IEEE Trans. Rob.
,
25
(
4
), pp.
975
982
.10.1109/TRO.2009.2022427
11.
She
,
J.
,
Lai
,
X.
,
Xin
,
X.
, and
Guo
,
L.
,
2010
, “
A Rewinding Approach to Motion Planning for Acrobot Based on Virtual Friction
,”
Proceedings of IEEE International Conference on Industrial Technology
,
Viña del Mar, Chile
, Mar. 14–17, pp.
471
476
.
12.
Ortega
,
R.
,
Spong
,
M. W.
,
Gómez-Estern
,
F.
, and
Blankenstein
,
G.
,
2002
, “
Stabilization of a Class of Underactuated Mechanical Systems via Interconnection and Damping Assignment
,”
IEEE Trans. Autom. Control
,
47
(
8
), pp.
1218
1233
.10.1109/TAC.2002.800770
13.
Mahindrakar
,
A. D.
,
Astolfi
,
A.
,
Ortega
,
R.
, and
Viola
,
G.
,
2006
, “
Further Constructive Results on Interconnection and Damping Assignment Control of Mechanical Systems: The Acrobot Example
,”
Int. J. Robust Nonlinear Control
,
16
(
14
), pp.
671
685
.10.1002/rnc.1088
14.
Kotyczka
,
P.
,
2011
, “
Local Linear Dynamics Assignment in IDA-PBC for Underactuated Mechanical Systems
,”
Proceedings of the 50th IEEE Conference on Decision and Control and European Control Conference
,
Orlando, FL
, Dec. 12–15, pp.
6534
6539
.
15.
Fantoni
,
I.
,
Lozano
,
R.
, and
Spong
,
M. W.
,
2000
, “
Energy Based Control of the Pendubot
,”
IEEE Trans. Autom. Control
,
45
(
4
), pp.
725
729
.10.1109/9.847110
16.
Lai
,
X.
,
She
,
J.
,
Yang
,
S. X.
, and
Wu
,
M.
,
2009
, “
Comprehensive Unified Control Strategy for Underactuated Two-Link Manipulators
,”
IEEE Trans. Syst. Man Cybern., Part B
,
39
(
2
), pp.
389
398
. 10.1109/TSMCB.2008.2005910
17.
Mahindrakar
,
A. D.
, and
Banavar
,
R. N.
,
2005
, “
A Swing-Up of the Acrobot Based on a Simple Pendulum Strategy
,”
Int. J. Control
,
78
(
6
), pp.
424
429
.10.1080/00207170500056835
18.
Arai
,
H.
,
Tanie
,
K.
, and
Shiroma
,
N.
,
1998
, “
Nonholonomic Control of a Three-DOF Planar Underactuated Manipulator
,”
IEEE Trans. Rob. Autom.
,
14
(
5
), pp.
681
695
.10.1109/70.720345
19.
Mahindrakar
,
A. D.
,
Banavar
,
R.
, and
Reyhanoglu
,
M.
,
2001
, “
Discontinuous Feedback Control of a 3 Link Planar PPR Underactuated Manipulator
,”
Proceedings of the 40th IEEE Conference on Decision and Control
, Vol.
3
,
Orlando, FL
, Dec. 4–7, pp.
2424
2429
.
20.
Mettin
,
U.
,
La Hera
,
P.
,
Freidovich
,
L.
, and
Shiriaev
,
A.
,
2007
, “
Generating Human-Like Motions for an Underactuated Three-Link Robot Based on the Virtual Constraints Approach
,”
Proceedings of the 46th IEEE Conference on Decision and Control
,
New Orleans, LA
, Dec. 12–14, pp.
5138
5143
.
21.
Takashima
,
S.
,
1991
, “
Control of Gymnast on a High Bar
,”
Proceedings of IEEE/RSJ International Workshop on Intelligent Robots and Systems
,
Osaka, Japan
, Nov. 3–5, pp.
1424
1429
.
22.
Jian
,
X.
, and
Zushu
,
L.
,
2003
, “
Dynamic Model and Motion Control Analysis of Three-Link Gymnastic Robot on Horizontal Bar
,”
Proceedings of the IEEE International Conference on Robotics Intelligent Systems and Signal Processing
,
Changsha, China
, Oct. 8–13, pp.
83
87
.
23.
Spong
,
M. W.
,
1994
, “
The Control of Underactuated Mechanical Systems
,”
Proceedings of the First International Conference on Mechatronics
,
Mexico City, Mexico
, Jan. 26–29, pp.
1
21
.
24.
Xin
,
X.
, and
Kaneda
,
M.
,
2007
, “
Swing-Up Control for a 3-DOF Gymnastic Robot With Passive First Joint: Design and Analysis
,”
IEEE Trans. Rob.
,
23
(
6
), pp.
1277
1285
.10.1109/TRO.2007.909805
25.
She
,
J.
,
Zhang
,
A.
,
Lai
,
X.
, and
Wu
,
M.
,
2012
, “
Global Stabilization of 2-DOF Underactuated Mechanical Systems—An Equivalent-Input-Disturbance Approach
,”
Nonlinear Dyn.
,
69
(
1–2
), pp.
495
509
.10.1007/s11071-011-0280-3
26.
Lai
,
X.
,
Zhang
,
A.
,
She
,
J.
, and
Wu
,
M.
,
2011
, “
Motion Control of Underactuated Three-Link Gymnast Robot Based on Combination of Energy and Posture
,”
IET Control Theory Appl.
,
5
(
13
), pp.
1484
1493
.10.1049/iet-cta.2010.0210
27.
Xin
,
X.
, and
Kaneda
,
M.
,
2004
, “
New Analytical Results of the Energy Based Swinging up Control of the Acrobot
,”
Proceedings of 43rd IEEE Conference on Decision and Control
,
Atlantis, Paradise Islands, Bahamas
, Dec. 14–17, pp.
704
709
.
28.
Freeman
,
R. A.
, and
Primbs
,
J. A.
,
1996
, “
Control Lyapunov Functions: New Ideas From an Old Source
,”
Proceedings of the 35th IEEE Conference on Decision and Control
,
Kobe, Japan
, Dec. 11–13, pp.
3926
3931
.
29.
Khalil
,
H. K.
,
2002
,
Nonlinear Systems
,
Prentice Hall
,
NJ
.
You do not currently have access to this content.