In this article, we consider the problem of reliable H control for a class of uncertain mechanical systems with input time-varying delay and possible occurrence of actuator faults. In particular, we assume that linear fractional transformation (LFT) uncertainty formulations appear in the mass, damping, and stiffness matrices. The main objective is to design a state feedback reliable H controller such that, for all admissible uncertainties as well as actuator failure cases, the resulting closed-loop system is robustly asymptotically stable while satisfying a prescribed H performance constraint. By constructing an appropriate Lyapunov–Krasovskii functional (LKF) and using linear matrix inequality (LMI) approach, a new set of sufficient conditions are derived in terms of LMIs for the existence of robust reliable H controller. Further, Schur complement and Jenson's integral inequality are used to substantially simplify the derivation in the main results. The obtained results are formulated in terms of LMIs which can be easily verified by the standard numerical softwares. Finally, numerical examples with simulation result are provided to illustrate the applicability and effectiveness of the proposed reliable H control scheme. The numerical results reveal that the proposed theory significantly improves the upper bound of time delays and minimum feasible H performance index over some existing works.

References

References
1.
Kwon
,
O. M.
,
2011
, “
Stability Criteria for Uncertain Stochastic Dynamic Systems With Time-Varying Delays
,”
Int. J. Robust Nonlinear Control
,
21
(
3
), pp.
338
350
.10.1002/rnc.1600
2.
Kwon
,
O. M.
,
Lee
,
S. M.
, and
Park
,
J. H.
,
2011
, “
Linear Matrix Inequality Approach to New Delay-Dependent Stability Criteria for Uncertain Dynamic Systems With Time-Varying Delays
,”
J. Optim. Theory Appl.
,
149
(
3
), pp.
630
646
.10.1007/s10957-011-9795-5
3.
Botmart
,
T.
,
Niamsup
,
P.
, and
Phat
,
V. N.
,
2011
, “
Delay-Dependent Exponential Stabilization for Uncertain Linear Systems With Interval Non-Differentiable Time-Varying Delays
,”
Appl. Math. Comput.
,
217
(
21
), pp.
8236
8247
.10.1016/j.amc.2011.02.097
4.
Feng
,
Z.
, and
Lam
,
J.
,
2012
, “
Integral Partitioning Approach to Robust Stabilization for Uncertain Distributed Time-Delay Systems
,”
Int. J. Robust Nonlinear Control
,
22
(
6
), pp.
676
689
.10.1002/rnc.1724
5.
Sakthivel
,
R.
,
Mathiyalagan
,
K.
, and
Marshal Anthoni
,
S.
,
2012
, “
Robust Stability and Control for Uncertain Neutral Time Delay Systems
,”
Int. J. Control
,
85
(
4
), pp.
373
383
.10.1080/00207179.2011.653832
6.
Du
,
H.
,
Lam
,
J.
, and
Sze
,
K.
,
2005
, “
H∞ Disturbance Attenuation for Uncertain Mechanical Systems With Input Delay
,”
Trans. Inst. Meas. Control
,
27
(
1
), pp.
37
52
.10.1191/0142331205tm132oa
7.
Du
,
H.
,
Lam
,
J.
, and
Sze
,
K.
,
2004
, “
Non-Fragile H∞ Vibration Control for Uncertain Structural Systems
,”
J. Sound Vib.
,
273
(
4
), pp.
1031
1045
.10.1016/S0022-460X(03)00520-0
8.
Lee
,
S. M.
,
Ji
,
D. H.
,
Kwon
,
O. M.
, and
Park
,
J. H.
,
2011
, “
Robust H∞ Filtering for a Class of Discrete-Time Nonlinear Systems
,”
Appl. Math. Comput.
,
217
(
20
), pp.
7991
7997
.10.1016/j.amc.2011.02.103
9.
Vadivel
,
P.
,
Sakthivel
,
R.
,
Mathiyalagan
,
K.
, and
Thangaraj
,
P.
,
2012
, “
Robust Stabilization of Nonlinear Uncertain Takagi-Sugeno Fuzzy Systems by H∞ Control
,”
IET Control Theory Appl.
,
6
(
16
), pp.
2556
2566
.10.1049/iet-cta.2012.0626
10.
Wu
,
Z. G.
,
Su
,
H.
, and
Chu
,
J.
,
2010
, “
H∞ Filtering for Singular Systems With Time-Varying Delay
,”
Int. J. Robust Nonlinear Control
,
20
(
11
), pp.
1269
1284
.10.1002/rnc.1509
11.
Lien
,
C. H.
,
Chen
,
J. D.
,
Yu
,
K. W.
, and
Chung
,
L. Y.
,
2012
, “
Robust Delay-Dependent H∞ Control for Uncertain Switched Time-Delay Systems Via Sampled-Data State Feedback Input
,”
Comput. Math. Appl.
,
64
(
5
), pp.
1187
1196
.10.1016/j.camwa.2012.03.062
12.
Liu
,
Y. Y.
, and
Yang
,
G. H.
,
2012
, “
Sampled-Data H∞ Control for Networked Control Systems With Digital Control Inputs
,”
Int. J. Syst. Sci.
,
43
(
9
), pp.
1728
1740
.10.1080/00207721.2010.550401
13.
Phat
,
V. N.
, and
Ha
,
Q. P.
,
2009
, “
H∞ Control and Exponential Stability of Nonlinear Non Autonomous Systems With Time-Varying Delay
,”
J. Optim. Theory Appl.
,
142
(
3
), pp.
603
618
.10.1007/s10957-009-9512-9
14.
Wu
,
L.
,
Wang
,
C.
, and
Gao
,
H.
,
2007
, “
Robust H∞ Control of Uncertain Distributed Delay Systems: Parameter-Dependent Lyapunov Functional Approach
,”
Dyn. Continuous Discrete Impulsive Syst. Ser. B
,
14
, pp.
155
173
.
15.
Yang
,
H.
,
Wang
,
C.
, and
Zhang
,
F.
,
2013
, “
A Decoupled Controller Design Approach for Formation Control of Autonomous Underwater Vehicles With Time Delays
,”
IET Control Theory Appl.
,
7
(
15
), pp.
1950
1958
.10.1049/iet-cta.2013.0072
16.
Yang
,
H.
, and
Zhang
,
F.
,
2012
, “
Robust Control of Formation Dynamics for Autonomous Underwater Vehicles in Horizontal Plane
,”
J. Dyn. Syst. Meas. Control
,
134
(
3
), p.
031009
.10.1115/1.4005507
17.
Niamsup
,
P.
, and
Phat
,
V. N.
,
2010
, “
H∞ Control for Nonlinear Time-Varying Delay Systems With Convex Polytopic Uncertainties
,”
Nonlinear Anal. Thoery Methods Appl.
,
72
(
11
), pp.
4254
4263
.10.1016/j.na.2010.02.001
18.
Gao
,
H.
,
Sun
,
W.
, and
Shi
,
P.
,
2010
, “
Robust Sampled-Data H∞ Control for Vehicle Active Suspension Systems
,”
IEEE Trans. Control Syst. Technol.
,
18
(
1
), pp.
238
245
.10.1109/TCST.2009.2015653
19.
Alwan
,
M. S.
,
Liu
,
X.
, and
Xie
,
W. C.
,
2013
, “
On Design of Robust Reliable H∞ Control and Input-to-State Stabilization of Uncertain Stochastic Systems With State Delay
,”
Commun. Nonlinear Sci. Numer. Simul.
,
18
(
4
), pp.
1047
1056
.10.1016/j.cnsns.2012.08.029
20.
Yang
,
X.
,
Gao
,
H.
,
Shi
,
P.
, and
Duan
,
G.
,
2010
, “
Robust H∞ Control for a Class of Uncertain Mechanical Systems
,”
Int. J. Control
,
83
(
7
), pp.
1303
1324
.10.1080/00207170903267047
21.
Gu
,
Z.
,
Liu
,
J.
,
Peng
,
C.
, and
Tian
,
E.
,
2012
, “
Reliable Control for Interval Time-Varying Delay Systems Subjected to Actuator Saturation and Stochastic Failure
,”
Optim. Control Appl. Methods
,
33
(
6
), pp.
739
750
.10.1002/oca.1023
22.
Liu
,
Y.
,
Wang
,
Z.
, and
Wang
,
W.
,
2011
, “
Robust Reliable Control for Discrete-Time-Delay Systems With Stochastic Nonlinearities and Multiplicative Noises
,”
Optim. Control Appl. Methods
,
32
(
3
), pp.
285
297
.10.1002/oca.938
23.
Wu
,
Z. G.
,
Shi
,
P.
,
Su
,
H.
, and
Chu
,
J.
,
2012
, “
Reliable H∞ Control for Discrete-Time Fuzzy Systems With Infinite-Distributed Delay
,”
IEEE Trans. Fuzzy Syst.
,
20
(
1
), pp.
22
31
.10.1109/TFUZZ.2011.2162850
24.
Mahmoud
,
M. S.
,
2012
, “
Reliable Decentralized Control of Interconnected Discrete Delay Systems
,”
Automatica
,
48
(
5
), pp.
986
990
.10.1016/j.automatica.2012.02.011
25.
Du
,
D.
,
2012
, “
Reliable H∞ Control for Takagi-Sugeno Fuzzy Systems With Intermittent Measurements
,”
Nonlinear Anal.: Hybrid Syst.
,
6
(
4
), pp.
930
941
.10.1016/j.nahs.2012.05.002
26.
Gao
,
Z.
,
Jiang
,
B.
,
Qi
,
R.
, and
Xu
,
Y.
,
2011
, “
Robust Reliable Control for a Near Space Vehicle With Parametric Uncertainties and Actuator Faults
,”
Int. J. Syst. Sci.
,
42
(
12
), pp.
2113
2124
.10.1080/00207721003731611
27.
Li
,
T.
,
Guo
,
L.
, and
Sun
,
C.
,
2007
, “
Robust Stability for Neural Networks With Time-Varying Delays and Linear Fractional Uncertainties
,”
Neurocomputing
,
71
(
1–3
), pp.
421
427
.10.1016/j.neucom.2007.08.012
28.
Georgieva
,
P. G.
, and
Ignatova
,
M. N.
,
1999
, “
LFT Models of Continuous Biotechnological Process
,”
Bioprocess Eng.
,
20
(
2
), pp.
179
183
.10.1007/s004490050578
29.
Du
,
H.
,
Zhang
,
N.
, and
Lam
,
J.
,
2008
, “
Parameter-Dependent Input-Delayed Control of Uncertain Vehicle Suspensions
,”
J. Sound Vib.
,
317
(
3–5
), pp.
537
556
.10.1016/j.jsv.2008.03.066
You do not currently have access to this content.