This paper addresses the task space impedance control of a robot driven through the multistage nonlinear flexible transmission. The proposed controller uses limited information of the angle and the current of the motors to regulate the end point compliance at the specified set point. In particular, motor angle is employed to estimate the stationary robot link angle and joint velocity in real time. They are then used to constitute the stationary force on the attempt to cancel the robot gravity force and to form the task space interacting force according to the desired impedance characteristics. Motor current is used to infer the transmitted torque to the robot. This torque is fed back to mitigate the effect of the motor inertia from deteriorating the desired impedance. Asymptotic stability of this controller with the flexible joint robot is guaranteed with additional damping. Passivity of the system is also investigated. Simulation and experiments of the proposed control scheme on a two degrees-of-freedom (DOF) cable-pulley driven flexible joint robot model are examined.

References

References
1.
Guthart
,
G. S.
, and
Salisbury
,
J. K.
,
2000
, “
The Intuitive® Telesurgery System: Overview and Application
,”
Proceedings of the IEEE International Conference on Robotics and Automation
, San Francisco, California, Apr. 24–28, pp.
618
621
.
2.
Wyrobek
,
K. A.
,
Berger
,
E. H.
,
Van der Loos
,
H. F. M.
, and
Salisbury
,
J. K.
,
2008
, “
Towards a Personal Robotics Development Platform: Rationale and Design of an Intrinsically Safe Personal Robot
,” Proceedings of the
IEEE
International Conference on Robotics and Automation
, Pasadena, CA, May 19–23, pp.
2165
2170
10.1109/ROBOT.2008.4543527.
3.
Hogan
,
N.
,
1985
, “
Impedance Control: An Approach to Manipulation
,”
ASME J. Dyn. Syst., Meas., Control
,
107
(
1
), pp.
1
24
.10.1115/1.3140702
4.
Chiaverini
,
S.
,
Siciliano
,
B.
, and
Villani
,
L.
,
1999
, “
A Survey of Robot Interaction Control Schemes With Experimental Comparison
,”
IEEE/ASME Trans. Mechatronics
,
4
(
3
), pp.
273
285
.10.1109/3516.789685
5.
Spong
,
M.
,
1987
, “
Modeling and Control of Elastic Joint Robots
,”
ASME J. Dyn. Syst., Meas., Control
,
109
(
4
), pp.
310
319
.10.1115/1.3143860
6.
Zollo
,
L.
,
Siciliano
,
B.
,
de Luca
,
A.
, and
Dario
,
P.
,
2005
, “
Compliance Control for an Anthropomorphic Robot With Elastic Joints: Theory and Experiments
,”
ASME J. Dyn. Syst., Meas., Control
,
127
(
3
), pp.
321
328
.10.1115/1.1978911
7.
Tomei
,
P.
,
1991
, “
A Simple PD Controller for Robots With Elastic Joints
,”
IEEE Trans. Autom. Control
,
36
(
10
), pp.
1208
1213
.10.1109/9.90238
8.
Albu-Schaffer
,
A.
,
Ott
,
C.
,
Frese
,
U.
, and
Hirzinger
,
G.
,
2003
, “
Cartesian Impedance Control of Redundant Robots: Recent Results With the DLR-Light-Weight-Arms
,” Proceedings of the
IEEE
International Conference on Robotics and Automation
, Taipei, Taiwan, Sept. 14–19, pp.
3704
3709
10.1109/ROBOT.2033.1242165.
9.
Ott
,
C.
, Albu-Schaffer, A., Kugi, A., and Hirzinger, G.,
2008
, “
On the Passivity-Based Impedance Control of Flexible Joint Robots
,”
IEEE Trans. Rob.
,
24
(
2
), pp.
416
429
.10.1109/TRO.2008.915438
10.
Chien
,
M. C.
, and
Huang
,
A. C.
,
2012
, “
Adaptive Impedance Controller Design for Flexible-Joint Electrically-Driven Robots Without Computation of the Regressor Matrix
,”
Robotica
,
30
(
1
), pp.
133
144
.10.1017/S0263574711000403
11.
Pratt
,
G.
, and
Williamson
,
M.
,
1995
, “
Series Elastic Actuators
,” Proceedings of the
IEEE
/RSJ
International Conference on Intelligent Robots and Systems
, Pittsburg, PA, Aug. 5–9, pp.
399
406
10.1109/IROS.1995.525827.
12.
Zinn
,
M.
, Roth, B., Khatib, O., and Salisbury, J. K.,
2004
, “
A New Actuation Approach for Human Friendly Robot Design
,”
Int. J. Rob. Res.
,
23
(
4–5
), pp.
379
398
.10.1177/0278364904042193
13.
Wolf
,
S.
, and
Hirzinger
,
G.
,
2008
, “
A New Variable Stiffness Design: Matching Requirements of the Next Robot Generation
,” Proceedings of the
IEEE
International Conference on Robotics and Automation
, Pasadena, CA, May 19–23, pp.
1741
1746
10.1109/ROBOT.2008.4543452.
14.
Grebenstein
,
M.
,
Albu-Schaer
,
A.
,
Bahls
,
T.
,
Chalon
,
M.
,
Eiberger
,
O.
,
Friedl
,
W.
,
Gruber
,
R.
,
Haddadin
,
S.
,
Hagn
,
U.
,
Haslinger
,
R.
,
Hoppner
,
H.
,
Jorg
,
S.
,
Nickl
,
M.
,
Nothhelfer
,
A.
,
Petit
,
F.
,
Reill
,
J.
,
Seitz
,
N.
,
Wimbock
,
T.
,
Wolf
,
S.
,
Wustho
,
T.
, and
Hirzinger
,
G.
,
2011
, “
The DLR Hand Arm System
,” Proceedings of the
IEEE
International Conference on Robotics and Automation
, Shanghai, China, May 9–13, pp.
3175
3182
10.1109/CRA.2011.5960371.
15.
Xu
,
Q.
,
2013
, “
Adaptive Discrete-Time Sliding Mode Impedance Control of a Piezoelectric Microgripper
,”
IEEE Trans. Rob.
,
29
(
3
), pp.
663
673
.10.1109/TRO.2013.2239554
16.
Karnopp
,
D. C.
,
Margolis
,
D. L.
, and
Rosenberg
,
R. C.
,
2006
,
System Dynamics: Modeling and Simulation of Mechatronic Systems
,
Wiley
,
New York
.
17.
Spong
,
M. W.
,
1997
, “
Underactuated Mechanical Systems
,”
Control Problems in Robotics and Automation
,
Springer-Verlag
,
London
, UK.
18.
Anderson
,
R. J.
,
1989
, “
Passive Computed Torque Algorithms for Robots
,”
Proceedings of the 28th IEEE Conference on Decision and Control
, Tampa, FL, Dec. 13–15, pp.
1638
1644
.
19.
Meirovitch
,
L.
,
2001
,
Fundamentals of Vibrations
,
McGraw-Hill
,
New York
.
20.
Colgate
,
J. E.
,
1988
, “
The Control of Dynamically Interacting Systems
,” Ph.D. thesis, MIT, Cambridge, MA.
21.
Marsden
,
J. E.
, and
West
,
M.
,
2001
, “
Discrete Mechanics and Variational Integrators
,”
Acta Numer.
,
10
, pp.
357
514
.10.1017/S096249290100006X
22.
Slotine
,
J.-J. E.
, and
Li
,
W.
,
1991
,
Applied Nonlinear Control
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
23.
Koditschek
,
D.
,
1984
, “
Natural Motion for Robot Arms
,”
Proceedings of the 23rd IEEE Conference on Decision and Control
, Las Vegas, NV, Dec. 12–14, pp.
733
735
.
24.
Khalil
,
H. K.
,
2001
,
Nonlinear Systems
,
3rd ed.
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
25.
Diolaiti
,
N.
, Niemeyer, G., Barbagli, F., and Salisbury, J. K.,
2006
, “
Stability of Haptic Rendering: Discretization, Quantization, Time Delay, and Coulomb Effects
,”
IEEE Trans. Rob.
,
22
(
2
), pp.
256
268
.10.1109/TRO.2005.862487
26.
20-sim Simulation Program, Controllab Products B.V., http://www.20sim.com
27.
Loncaric
,
J.
,
1987
, “
Normal Forms of Stiffness and Compliance Matrices
,”
IEEE J. Rob. Autom.
,
3
(
6
), pp.
567
572
.10.1109/JRA.1987.1087148
You do not currently have access to this content.