Reference-tracking closed-loop systems with saturating actuators often operate in asymmetric regimes. This is because reference signals cause the operating points away from the point of saturation symmetry (even if the actuator itself is symmetric, i.e., odd, function). Stability analysis and stabilizing controller design for asymmetric systems can be carried out using the same techniques as those for the symmetric case. In contrast, currently available methods for controller design in the framework of reference tracking are not applicable to asymmetric systems. The goal of this paper is to develop such a method for single-input single-output (SISO) plants having no poles in the open right-side plane. The approach is based on a global quasi-linearization technique referred to as stochastic linearization, which approximates the saturation function by an equivalent gain and equivalent bias. The main qualitative result obtained is that the asymmetry leads to a constant disturbance acting at the input of the plant. The quantitative results are analytical expressions for this disturbance and the ensuing steady-state tracking errors. It is shown that these errors exhibit a behavior incompatible with the linear control theory. Specifically, they may be increasing or nonmonotonic functions of the controller gain. In view of this fact, the paper develops a time-domain technique for linear tracking controller design based on two loci: the saturating root locus (to account for dynamics) and the saturating tracking error locus (to accounts for statics). Methods for sketching these loci are provided and applied to controllers design.

References

References
1.
Kazakov
,
I.
,
1954
, “
Approximate Method for the Statistical Analysis of Nonlinear Systems
,” Technical Report No. VVIA 394, Trudy.
2.
Boonton
,
R.
,
1954
, “
Nonlinear Control Systems With Random Inputs
,”
IRE Trans. Circuit Theory
,
1
(
1
), pp.
9
18
.
3.
Kazakov
,
I.
, and
Dostupov
,
B.
,
1962
,
Statistical Dynamics of Nonlinear Control Systems
,
Fizmatgiz, Moscow
(in Russian).
4.
Gelb
,
A.
, and
Vander Velde
,
W.
,
1968
,
Multiple Input Describing Function and Nonlinear Design
,
McGraw-Hill
,
New York
.
5.
Khalil
,
H. K.
,
2002
,
Nonlinear Systems
,
3rd ed.
,
Prentice Hall
, Upper Saddle River, NJ.
6.
Roberts
,
J. B.
, and
Spanos
,
P. D.
,
2003
,
Random Vibration and Statistical Linearization
,
Dover Publications
,
Mineola, NY
.
7.
Skrzypczyk
,
J.
,
1995
, “
Accuracy Analysis of Statistical Linearization Methods Applied to Nonlinear Dynamical Systems
,”
Rep. Math. Phys.
,
36
(
1
), pp.
1
20
.
8.
Gokcek
,
C.
,
Kabamba
,
P. T.
, and
Meerkov
,
S. M.
,
2000
, “
Disturbance Rejection in Control Systems With Saturating Actuators
,”
Nonlinear Anal.
,
40
, pp.
213
226
.
9.
Gokcek
,
C.
,
2000
, “
Disturbance Rejection and Reference Tracking in Control Systems With Saturating Actuators
,” Ph.D. dissertation, University of Michigan, Ann Arbor, MI.
10.
Kabamba
,
P.
,
Meerkov
,
S.
, and
Ossareh
,
H. R.
,
2015
, “
Stochastic Linearisation Approach to Performance Analysis of Feedback Systems With Asymmetric Nonlinear Actuators and Sensors
,”
Int. J. Control
,
88
(
1
), pp.
65
79
.
11.
Ching
,
S.
,
Meerkov
,
S. M.
, and
Runolfsson
,
T.
,
2010
, “
Gaussianization of Random Inputs by Filtering Plants: The Case of Poisson White and Telegraph Processes
,” 49th
IEEE
Conference on Decision and Control
, Atlanta, GA, Dec. 15–17, pp.
2650
2655
.
12.
Ching
,
S.
,
Eun
,
Y.
,
Gokcek
,
C.
,
Kabamba
,
P. T.
, and
Meerkov
,
S. M.
,
2011
,
Quasilinear Control
,
Cambridge University
, New York.
13.
Chou
,
J.-H.
, and
Horng
,
I.-R.
,
1991
, “
Stabilizing Controllers for Uncertain Linear Saturating Systems With Additive Disturbances
,”
ASME J. Dyn. Syst. Meas. Control
,
113
(
2
), pp.
334
336
.
14.
Hu
,
T.
, and
Lin
,
Z.
,
2001
,
Control Systems With Actuator Saturation: Analysis and Design
, Birkhäuser, Boston.
15.
Tarbouriech
,
S.
,
Garcia
,
G.
,
da Silva
,
J. M. G.
, Jr.
, and
Queinnec
,
I.
,
2011
,
Stability and Stabilization of Linear Systems With Saturating Actuators
,
Springer
, New York.
16.
Corradini
,
M. L.
,
Cristofaro
,
A.
,
Giannoni
,
F.
, and
Orlando
,
G.
,
2012
,
Control Systems With Saturating Inputs
(Lecture Notes in Control and Information Sciences), Vol.
424
, Springer-Verlag London Ltd., London.
17.
Saberi
,
A.
,
Stoorvogel
,
A.
, and
Sannuti
,
P.
,
2012
,
Internal and External Stabilization of Linear Systems With Constraints
,
Birkhauser
, Boston.
18.
Glattfelder
,
A.
, and
Schaufelberger
,
W.
,
2003
,
Control Systems With Input and Output Constraints
,
Springer
, London.
19.
Kanamori
,
M.
, and
Tomizuka
,
M.
,
2006
, “
Dynamic Anti-Integrator-Windup Controller Design for Linear Systems With Actuator Saturation
,”
ASME J. Dyn. Syst. Meas. Control
,
129
(
1
), pp.
1
12
.
20.
Zaccarian
,
L.
, and
Teel
,
A.
,
2011
,
Modern Anti-Windup Synthesis: Control Augmentation for Actuator Saturation
,
Princeton University
, Princeton, NJ.
21.
Camacho
,
E. F.
, and
Alba
,
C. B.
,
2000
,
Model Predictive Control
,
Prentice Hall
, Upper
Saddle River, NJ
.
22.
Jung
,
S.
, and
Wen
,
J. T.
,
2004
, “
Nonlinear Model Predictive Control for the Swing-up of a Rotary Inverted Pendulum
,”
ASME J. Dyn. Syst. Meas. Control
,
126
(
3
), pp.
666
673
.
23.
Morari
,
M.
,
Garcia
,
C.
,
Prett
,
D.
, and
Lee
,
J.
,
2004
,
Model Predictive Control
,
Prentice Hall
,
Upper Saddle River, NJ
.
24.
Gokcek
,
C.
,
Kabamba
,
P. T.
, and
Meerkov
,
S. M.
,
2001
, “
An LQR/LQG Theory for Systems With Saturating Actuators
,”
IEEE Trans. Autom. Control
,
46
(
10
), pp.
1529
1542
.
25.
Eun
,
Y.
,
Kabamba
,
P. T.
, and
Meerkov
,
S. M.
,
2003
, “
Tracking of Random References: Random Sensitivity Function and Tracking Quality Indicators
,”
IEEE Trans. Autom. Control
,
48
(
9
), pp.
1666
1671
.
26.
Eun
,
Y.
,
Kabamba
,
P. T.
, and
Meerkov
,
S. M.
,
2004
, “
System Types in Feedback Control With Saturating Actuators
,”
IEEE Trans. Autom. Control
,
49
(
2
), pp.
287
291
.
27.
Eun
,
Y.
,
Kabamba
,
P. T.
, and
Meerkov
,
S. M.
,
2005
, “
Analysis of Random Reference Tracking in Systems With Saturating Actuators
,”
IEEE Trans. Autom. Control
,
50
(
11
), pp.
1861
1866
.
28.
Ching
,
S.
,
Kabamba
,
P. T.
, and
Meerkov
,
S. M.
,
2009
, “
Admissible Pole Locations for Tracking Random References
,”
IEEE Trans. Autom. Control
,
54
(
1
), pp.
168
171
.
29.
Ching
,
S.
,
Kabamba
,
P. T.
, and
Meerkov
,
S. M.
,
2009
, “
Root Locus for Random Reference Tracking in Systems With Saturating Actuators
,”
IEEE Trans. Autom. Control
,
54
(
1
), pp.
79
91
.
30.
Ching
,
S.
,
Kabamba
,
P. T.
, and
Meerkov
,
S. M.
,
2010
, “
Simultaneous Design of Controllers and Instrumentation: Ilqr/ilqg
,”
IEEE Trans. Autom. Control
,
55
(
1
), pp.
217
221
.
31.
Quasilinear Control, www.quasilinearcontrol.com
32.
Kabamba
,
P.
,
Meerkov
,
S.
, and
Ossareh
,
H. R.
,
2013
, “
Quasi-Linear Control Approach to Designing Step Tracking Controllers for Systems With Saturating Actuators
,”
ASME J. Dyn. Syst. Meas. Control
,
135
(
5
), p.
054504
.
You do not currently have access to this content.