Researchers mostly focus on the role of suspension system characteristics on vehicle dynamics. However tire characteristics are also influential on the vehicle dynamics behavior. In this paper, the effects of tire vertical stiffness on the ride, handling, accelerating/braking performance, and fuel consumption of a vehicle are analytically investigated. Furthermore, a method for determining the optimum vertical stiffness of tires is presented. For these purposes, first an appropriate mathematical criterion for the ride, handling, accelerating/braking performance, and fuel consumption is developed. Next, to achieve the optimum tire characteristic, a performance index, which contains all of the above-mentioned criteria, is defined and optimized. In the proposed performance index, the tire vertical stiffness is a design variable and its optimization provides a compromise among ride, handling, accelerating/braking performance, and fuel consumption of the vehicle. Last, the analytical optimization results are confirmed by performing precise numerical simulations.

References

References
1.
Els
,
P. S.
,
Theron
,
N. J.
,
Uys
,
P. E.
, and
Thoresson
,
M. J.
,
2007
, “
The Ride Comfort Vs. Handling Compromise for Off-road Vehicles
,”
J. Terramech.
,
44
(
4
), pp.
303
317
.
2.
Sharp
,
R. S.
, and
Crolla
,
D. A.
,
1987
, “
Road Vehicle Suspension System Design—A Review
,”
Veh. Syst. Dyn.
,
16
(
3
), pp.
167
192
.
3.
Gobbi
,
M.
,
Haque
,
I.
,
Papalambros
,
P. Y.
, and
Mastinu
,
G.
,
2005
, “
Optimization and Integration of Ground Vehicle Systems
,”
Veh. Syst. Dyn.
,
43
(
6–7
), pp.
437
453
.
4.
Kim
,
B. S.
,
Chi
,
C. H.
, and
Lee
,
T. K.
,
2007
, “
A Study on Radial Directional Natural Frequency and Damping Ratio in a Vehicle Tire
,”
Appl. Acoust.
,
68
(
5
), pp.
538
556
.
5.
Guillou
,
M.
, and
Bradley
,
C.
,
2010
, “
Fuel Consumption Testing to Verify the Effect of Tire Rolling Resistance on Fuel Economy
,”
SAE
Technical Paper No. 2010-01-0763.
6.
Dixon
, and
John
,
C.
,
1996
,
Tires, Suspension and Handling
,
Society of Automotive Engineering, Warrendale, PA
.
7.
Kaczmarek
,
R. W.
,
1984
, “
Central Tire Inflation Systems (CTIS)—A Means to Enhance Vehicle Mobility
,”
Eighth International Conference of the ISTVS
,
Cambridge, UK
, pp. 1255–1271.
8.
Adams
,
B. T.
,
Reid
,
J. F.
,
Hummel
,
J. W.
,
Zhang
,
Q.
, and
Hoeft
,
R. G.
,
2004
, “
Effects of Central Tre Inflation Systems on Ride Quality of Agricultural Vehicles
,”
J. Terramech.
,
41
(
4
), pp.
199
207
.
9.
Wong
,
J. Y.
,
2001
,
Theory of Ground Vehicles
,
Wiley
,
New York
.
10.
Els
,
P. S.
,
2005
, “
The Applicability of Ride Comfort Standards to Off-Road Vehicles
,”
J. Terramech.
,
42
(
1
), pp.
47
64
.
11.
Heißing
,
B.
, and
Ersoy
,
M.
,
2010
,
Chassis Handbook: Fundamentals, Driving Dynamics, Components, Mechatronics, Perspectives
,
Springer
,
New York
.
12.
Maher
,
D.
, and
Young
,
P.
,
2011
, “
An Insight Into Linear Quarter Car Model Accuracy
,”
Veh. Syst. Dyn.
,
49
(
3
), pp.
463
480
.
13.
Jazar
,
R. N.
,
2008
,
Vehicle Dynamics: Theory and Application
,
Springer
,
New York
.
14.
Goncalves
,
J. P.
, and
Ambrósio
,
J. A.
,
2005
, “
Road Vehicle Modeling Requirements for Optimization of Ride and Handling
,”
Multibody Syst. Dyn.
,
13
(
1
), pp.
3
23
.
15.
Uys
,
P. E.
,
Els
,
P. S.
, and
Thoresson
,
M. J.
,
2006
, “
Criteria for Handling Measurement
,”
J. Terramech.
,
43
(
1
), pp.
43
67
.
16.
Pacejka
,
H.
,
2005
,
Tire and Vehicle Dynamics
,
Elsevier
,
Amsterdam
.
17.
Schmeitz
,
A. J. C.
,
Besselink
,
I. J. M.
,
De Hoogh
,
J.
, and
Nijmeijer
,
H.
,
2005
, “
Extending the Magic Formula and SWIFT Tyre Models for Inflation Pressure Changes
,”
10th International VDI Congress
,
Hannover, Germany
, pp. 201–225.
18.
Veld
,
I. B. A.
,
2007
, “
Enhancing the MF-Swift Tyre Model for Inflation Pressure Changes
,” Master's thesis, Eindhoven University of Technology, Eindhoven, The Netherlands, http://www.mate.tue.nl/mate/pdfs/8727.pdf
19.
Besselink
,
I. J. M.
,
Schmeitz
,
A. J. C.
, and
Pacejka
,
H. B.
,
2010
, “
An Improved Magic Formula/Swift Tyre Model That can Handle Inflation Pressure Changes
,”
Veh. Syst. Dyn.
,
48
(
S1
), pp.
337
352
.
20.
Low Rolling Resistance Tires
, Energy Efficiency and Renewable Energy, U.S. Department of Energy, Last accessed Aug. 11, 2007, http://www.afdc.energy.gov/conserve/fuel_economy_tires_light.html
21.
Reimpell
,
J.
,
Stoll
,
H.
, and
Betzler
,
J.
,
2001
,
The Automotive Chassis: Engineering Principles
,
Butterworth-Heinemann
,
Oxford
.
22.
Michelin
,
2003
,
The Tyre—Rolling Resistance and Fuel Savings
,
Société de Technologie Michelin, Clermont-Ferrand, France
.
23.
Kinjawadekar
,
T.
,
Dixit
,
N.
,
Heydinger
,
G. J.
,
Guenther
,
D. A.
, and
Salaani
,
M. K.
,
2009
, “
Vehicle Dynamics Modeling and Validation of the 2003 Ford Expedition With ESC Using Carsim
,”
SAE
Technical Paper No. 2009-01-0452.
24.
Ghoneim
,
Y. A.
,
Lin
,
W. C.
,
Sidlosky
,
D. M.
,
Chen
,
H. H.
, and
Chin
,
Y. K.
,
2000
, “
Integrated Chassis Control System to Enhance Vehicle Stability
,”
Int. J. Veh. Des.
,
23
(
1
), pp.
124
144
.
25.
Van Zanten
,
A. T.
,
Erhardt
,
R.
, and
Pfaff
,
G.
,
1995
, “
VDC, the Vehicle Dynamics Control System of Bosch
,” SAE Technical Paper No. 950759.
You do not currently have access to this content.