This paper reports on experimental investigations of a switched inertance hydraulic system (SIHS), which is designed to control the flow and pressure of a hydraulic supply. The switched system basically consists of a switching element, an inductance (inertance), and a capacitance. Two basic modes, a flow booster and a pressure booster, can be configured in a three-port SIHS. It is capable of boosting the pressure or flow with a corresponding drop in flow or pressure, respectively. This technique makes use of the inherent reactive behavior of hydraulic components. A high-speed rotary valve is used to provide sufficiently high switching frequency and to minimize the pressure and flow loss at the valve orifice, and a small diameter tube is used to provide an inductive effect. In this paper, a flow booster is introduced as the switched system for investigation. The measured steady-state and dynamic characteristics of the rotary valve are presented, and the dynamics characteristics of the flow booster are investigated in terms of pressure loss, flow loss, and system efficiency. The speed of sound is measured by analysis of the measured dynamic pressures in the inertance tube. A detailed analytical model of an SIHS is applied to analyze the experimental results. Experimental results on a flow booster rig show a very promising performance for the SIHS.

References

References
1.
Johnston
,
D. N.
,
2009
, “
A Switched Inertance Device for Efficient Control of Pressure and Flow
,”
ASME
Paper No. DSCC2009-2535.
2.
Brown
,
F. T.
,
1987
, “
Switched Reactance Hydraulics: A New Way to Control Fluid Power
,”
National Conference on Fluid Power
,
Chicago, IL
, pp.
25
34
.
3.
Scheidl
,
R.
,
Manhartsgruber
,
B.
, and
Winkler
,
B.
,
2008
, “
Hydraulic Switching Control—Principles and State of the Art
,” The First Workshop on Digital Fluid Power, Tampere, Finland.
4.
Scheidl
,
R.
,
Manhartsgruber
,
B.
,
Kogler
,
H.
, and
Winkler
,
B.
,
2008
, “
The Hydraulic Buck Converter-Concept and Experimental Results
,”
Sixth International Conference on Fluid Power
,
Dresden, Germany
.
5.
Kogler
,
H.
, and
Scheidl
,
R.
,
2008
, “
Two Basic Concepts of Hydraulic Switching Converters
,” First Workshop on Digital Fluid Power, Tampere, Finland.
6.
Kogler
,
H.
,
Scheidl
,
R.
,
Ehrentraut
,
M.
,
Guglielmino
,
E.
,
Semini
,
C.
, and
Caldwell
,
D. G.
,
2010
, “
A Compact Hydraulic Switching Converter for Robotic Applications
,”
Fluid Power and Motion Control, Bath
, pp.
55
66
.
7.
Guglielmino
,
E.
,
Semini
,
C.
,
Yang
,
Y.
,
Caldwell
,
D.
,
Kogler
,
H.
, and
Scheidl
,
R.
,
2009
, “
Energy Efficient Fluid Power in Autonomous Legged Robotics
,”
ASME
Paper No. DSCC2009-2522.
8.
Wang
,
F.
,
Gu
,
L.
, and
Chen
,
Y.
,
2011
, “
A Continuously Variable Hydraulic Pressure Converter Based on High-Speed On-Off Valves
,”
Mechatronics
,
21
(
8
), pp.
1298
1308
.
9.
Scheidl
,
R.
,
Garstenauer
,
M.
, and
Manhartsgruber
,
B.
,
2009
, “
Switching Type Control of Hydraulic Drives—A Promising Perspective for Advanced Actuation in Agricultural Machinery
,”
SAE
Technical Paper No. 2000-01-2559.
10.
Achten
,
P.
,
van den Brink
,
T.
,
Potma
,
J.
,
Schellekens
,
M.
, and
Vael
,
G.
,
2009
, “
A Four-Quadrant Hydraulic Transformer for Hybrid Vehicles
,”
11th Scandinavian International Conference on Fluid Power
,
Linköping, Sweden
.
11.
Van de Ven
,
J. D.
,
2013
, “
On Fluid Compressibility in Switch-Mode Hydraulic Circuits—Part I: Modeling and Analysis
,”
ASME J. Dyn. Syst. Meas. Control
,
135
(
2
), p.
021013
.
12.
Van de Ven
,
J. D.
,
2013
, “
On Fluid Compressibility in Switch-Mode Hydraulic Circuits—Part II: Experimental Results
,”
ASME J. Dyn. Syst. Meas. Control
,
135
(
2
), p.
021014
.
13.
Scheidl
,
R.
, and
Hametner
,
G.
,
2003
, “
The Role of Resonance in Elementary Hydraulic Switching Control
,”
Proc. Inst. Mech. Eng., Part I
,
217
(
6
), pp.
469
480
.
14.
Manhartsgruber
,
B.
,
Mikota
,
G.
, and
Scheidl
,
R.
,
2005
, “
Modeling of a Switching Control Hydraulic System
,”
Math. Comput. Modell. Dyn. Syst.: Methods, Tools Appl. Eng. Related Sci.
,
11
(
3
), pp.
329
344
.
15.
Wang
,
P.
,
Kudzma
,
S.
,
Johnston
,
D. N.
,
Plummer
,
A.
, and
Hillis
,
A. J.
,
2011
, “
The Influence of Wave Effects on Digital Switching Valve Performance
,” The Fourth Workshop on Digital Fluid Power, Linz, Austria.
16.
Scheidl
,
R.
,
Manhartsgruber
,
B.
, and
Kogler
,
H.
,
2011
, “
Mixed Time-Frequency Domain Simulation of a Hydraulic Inductance Pipe With a Check Valve
,”
Proc. Inst. Mech. Eng., Part C
,
225
(
10
), pp.
2413
2421
.
17.
Pan
,
M.
,
Johnston
,
D. N.
,
Plummer
,
A.
,
Kudzma
,
S.
, and
Hillis
,
A.
,
2014
, “
Theoretical and Experimental Studies of a Switched Inertance Hydraulic System
,”
Proc. Inst. Mech. Eng., Part I
,
228
(
1
), pp.
12
25
.
18.
Pan
,
M.
,
Johnston
,
D. N.
,
Plummer
,
A.
,
Kudzma
,
S.
, and
Hillis
,
A.
,
2014
, “
Theoretical and Experimental Studies of a Switched Inertance Hydraulic System Including Switching Transition Dynamics, Non-Linearity and Leakage
,”
Proc. Inst. Mech. Eng., Part I
,
228
(
10
), pp.
802
815
.
19.
Winkler
,
B.
,
Plockinger
,
A.
, and
Scheidl
,
R.
,
2008
, “
Components for Digital and Switching Hydraulics
,” The First Workshop on Digital Fluid Power, Tampere, Finland, pp.
53
76
.
20.
Brown
,
F. T.
,
1988
, “
A Hydraulic Rotary Switched Inertance Servo-Transformer
,”
J. Dyn. Syst., Meas., Control
,
110
(
2
), pp.
144
150
.
21.
Winkler
,
B.
,
2004
, “
Development of a Fast Low-Cost Switching Valve for Big Flow Rates
,”
Third PFNI-PhD Symposium on Fluid Power
,
Terrassa, Spain
.
22.
Tu
,
H. C.
,
Rannow
,
M.
,
Van de Ven
,
J.
,
Wang
,
M.
,
Li
,
P.
, and
Chase
,
T.
,
2007
, “
High Speed Rotary Pulse Width Modulated On/Off Valve
,”
ASME
Paper No. IMECE2007-42559.
23.
Winkler
,
B.
, and
Scheidl
,
R.
,
2007
, “
Development of a Fast Seat Type Switching Valve for Big Flow Rates
,”
The Tenth Scandinavian International Conference on Fluid Power
,
Tampere, Finland
.
24.
Kudzma
,
S.
,
Johnston
,
D. N.
,
Plummer
,
A.
,
Sell
,
N.
,
Hillis
,
A.
, and
Pan
,
M.
,
2012
, “
A High Flow Fast Switching Valve for Digital Hydraulic Systems
,”
The 5th Workshop on Digital Fluid Power
,
Tampere, Finland
.
25.
Johnston
,
D. N.
,
1987
, “
Measurement and Prediction of the Fluid Borne Noise Characteristics of Hydraulic Components and Systems
,” Ph.D. thesis, University of Bath, Bath, UK.
26.
Stecki
,
J. S.
, and
Davis
,
D.
,
1986
, “
Fluid Transmission Lines—Distributed Parameter Models Part 1: A Review of the State of the Art
,”
Proc. Inst. Mech. Eng., Part A
200
(
4
), pp.
215
228
.
27.
Johnston
,
D. N.
, and
Edge
,
K. A.
,
1991
, “
In-Situ Measurement of the Wavespeed and Bulk Modulus in Hydraulic Lines
,”
Proc. Inst. Mech. Eng., Part I
,
205
(
3
), pp.
191
197
.
28.
Johnston
,
D. N.
,
2007
,
Pressure Ripple Analysis Software Package prasp: User Guide and Reference Manual
,
Centre for Power Transmission and Motion Control, University of Bath
,
Bath, UK
.
You do not currently have access to this content.