In this paper, a convergent, nearest-neighbor, control protocol is suggested for agents with nontrivial dynamics. The protocol guarantees convergence to a common point in space even if each agent is restricted to communicate with a single nearest neighbor. The neighbor, however, is required to lie outside an arbitrarily small priority zone surrounding the agent. The control protocol consists of two layers interconnected in a provably correct manner. The first layer provides the guidance signal to a rendezvous point assuming that the agents have first-order dynamics. The other layer converts in a decentralized manner the guidance signal to a control signal that suits realistic agents, such as unmanned ground vehicles (UGVs), unmanned aerial vehicles (UAVs), and holonomic agents with second-order dynamics.

References

1.
Lin
,
H.
, and
Antsaklis
,
P. J.
,
2009
, “
Stability and Stabilizability of Switched Linear Systems: A Survey of Recent Results
,”
IEEE Trans. Autom. Control
,
54
(
2
), pp.
308
322
.
2.
Olfati-Saber
,
R.
,
Fax
,
J. A.
, and
Murray
,
R. M.
,
2009
, “
Consensus and Cooperation in Networked Multi-Agent Systems
,”
Proc. IEEE
,
95
(
1
), pp.
215
233
.
3.
Ren
,
W.
,
Beard
,
R. W.
, and
Atkins
,
E. M.
,
2007
, “
Information Consensus in Multivehicle Cooperative Control
,”
IEEE Control Syst. Mag.
,
27
(
2
), pp.
71
82
.
4.
Vicsek
,
T.
,
Czirók
,
A.
,
Ben-Jacob
,
E.
,
Cohen
,
I.
, and
Shochet
,
O.
,
1995
, “
Novel Type of Phase Transition in a System of Self-Driven Particles
,”
Phys. Rev. Lett.
,
57
(
6
), pp.
1226
1229
.
5.
Jadbabaie
,
A.
,
Lin
,
J.
, and
Morse
,
A. S.
,
2003
, “
Coordination of Groups of Mobile Autonomous Agents Using Nearest Neighbor Rules
,”
IEEE Trans. Autom. Control
,
48
(
6
), pp.
988
1001
.
6.
Cucker
,
F.
, and
Smale
,
S.
,
2007
, “
Emergent Behavior in Flocks
,”
IEEE Trans. Autom. Control
,
32
(
5
), pp.
852
862
.
7.
Masoud
,
A. A.
,
2007
, “
Decentralized Self-Organizing Potential Field-Based Control for Individually Motivated Mobile Agents in a Cluttered Environment: A Vector-Harmonic Potential Field Approach
,”
IEEE Trans. Syst., Man, Cybern., Part A
,
37
(
3
), pp.
372
390
.
8.
Park
,
J.
,
Yoo
,
J. H.
, and
Kim
,
H. J.
,
2010
, “
Two Distributed Guidance Approaches for Rendezvous of Multiple Agents
,”
International Conference on Control, Automation and Systems
,
KINTEX, Gyeonggi-do, Korea
, pp.
2128
2132
.
9.
Shi
,
G.
, and
Johansson
,
K. H.
,
2011
, “
Multi-Agent Robust Consensus-Part I: Convergence Analysis
,”
IEEE Conference on Decision and Control and European Control Conference
(
CDC-ECC
), Orlando, FL, Dec. 12–15, pp.
5744
5749
.
10.
Fang
,
L.
, and
Antsaklis
,
P. J.
,
2008
, “
Asynchronous Consensus Protocols Using Nonlinear Paracontractions Theory
,”
IEEE Trans. Autom. Control
,
53
(
10
), pp.
2351
2355
.
11.
Cortés
,
J.
,
2008
, “
Distributed Algorithms for Reaching Consensus on General Functions
,”
Automatica
,
44
(
3
), pp.
726
737
.
12.
Cortes
,
J.
,
Martinez
,
S.
, and
Bullo
,
F.
,
2006
, “
Robust Rendezvous for Mobile Autonomous Agents Via Proximity Graphs in Arbitrary Dimensions
,”
IEEE Trans. Autom. Control
,
51
(
8
), pp.
1289
1298
.
13.
Cortés
,
J.
,
2006
, “
Finite-Time Convergent Gradient Flows With Applications to Network Consensus
,”
Automatica
,
42
(
11
), pp.
1993
2000
.
14.
Lee
,
U.
, and
Mesbahi
,
M.
,
2011
, “
Constrained Consensus Via Logarithmic Barrier Functions
,”
IEEE Conference on Decision and Control and European Control Conference
(
CDC-ECC
), Orlando, FL, Dec. 12–15, pp.
3608
3613
.
15.
Caicedo-Nunez
,
C. H.
, and
Zefran
,
M.
,
2008
, “
Rendezvous Under Noisy Measurements
,”
47th IEEE Conference on Decision and Control
(
CDC
), Cancun, Mexico, Dec. 9–11, pp.
1815
1820
.
16.
Abdessameud
,
A.
, and
Tayebi
,
A.
,
2011
, “
A Unified Approach to the Velocity-Free Consensus Algorithms Design for Double Integrator Dynamics With Input Saturations
,”
IEEE Conference on Decision and Control and European Control Conference
(
CDC-ECC
), Orlando, FL, Dec. 12–15, pp.
4903
4908
.
17.
Montijano
,
E.
,
Thunberg
,
J.
,
Hu
,
X.
, and
Sagues
,
C.
,
2011
, “
Multi-Robot Distributed Visual Consensus Using Epipoles
,”
IEEE Conference on Decision and Control and European Control Conference
(
CDC-ECC
), Orlando, FL, Dec. 12–15, pp.
2750
2755
.
18.
Listmann
,
K. D.
,
Masalawala
,
M. V.
, and
Adamy
,
J.
,
2009
, “
Consensus for Formation Control of Nonholonomic Mobile Robots
,”
IEEE International Conference on Robotics and Automation
(
ICRA '09
), Kobe, Japan, May 12–17, pp.
3886
3891
.
19.
Bhattacharya
,
R.
,
2007
, “
Feedback Generation in Rendezvous Problems Using Synthetic Dynamics
,”
American Control Conference
, New York, July 9–13, pp.
3277
3282
.
20.
Consolini
,
L.
,
Morbidi
,
F.
,
Prattichizzo
,
D.
, and
Tosques
,
M.
,
2012
, “
On a Class of Hierarchical Formations of Unicycles and Their Internal Dynamics
,”
IEEE Trans. Autom. Control
,
57
(
4
), pp.
845
859
.
21.
Xu
,
Y.
,
Tian
,
Y.-P.
, and
Chen
,
Y.
,
2012
, “
Design of Consensus Protocol for Nonholonomic Systems Under Directed Communication Topology
,”
2012 IEEE 51st IEEE Conference on Decision and Control
(
CDC
), Maui, HI, Dec. 10–13, pp.
6253
6258
.
22.
Guisheng
,
Z.
,
Takeda
,
J.
,
Imae
,
J.
, and
Kobayashi
,
T.
,
2010
, “
An Approach to Achieving Consensus in Nonholonomic Systems
,”
IEEE International Symposium on Intelligent Control
(
ISIC
), Yokohama, Japan, Sept. 8–10, pp.
1476
1481
.
23.
Zheng
,
R.
, and
Sun
,
D.
,
2013
, “
Rendezvous of Unicycles: A Bearings-Only and Perimeter Shortening Approach
,”
Syst. Control Lett.
,
62
(
5
), pp.
401
407
.
24.
Ren
,
W.
,
2008
, “
On Consensus Algorithms for Double-Integrator Dynamics
,”
IEEE Trans. Autom. Control
,
53
(
6
), pp.
1503
1509
.
25.
Yu
,
W.
,
Chen
,
G.
, and
Cao
,
M.
,
2010
, “
Some Necessary and Sufficient Conditions for Second-Order Consensus in Multi-Agent Dynamical Systems
,”
Automatica
,
46
(
6
), pp.
1089
1095
.
26.
Li
,
S.
,
Du
,
H.
, and
Lin
,
X.
,
2011
, “
Finite-Time Consensus Algorithm for Multi-Agent Systems With Double-Integrator Dynamics
,”
Automatica
,
47
(
8
), pp.
1706
1712
.
27.
Abdessameud
,
A.
, and
Tayebi
,
A.
,
2013
, “
On Consensus Algorithms Design for Double Integrator Dynamics
,”
Automatica
,
49
(
1
), pp.
253
260
.
28.
Masoud
,
S. A.
, and
Masoud
,
A. A.
,
2000
, “
Constrained Motion Control Using Vector Potential Fields
,”
IEEE Trans. Syst., Man, Cybern., Part A
,
30
(
3
), pp.
251
272
.
29.
Masoud
,
S. A.
, and
Masoud
,
A. A.
,
2002
, “
Motion Planning in the Presence of Directional and Regional Avoidance Constraints Using Nonlinear, Anisotropic, Harmonic Potential Fields: A Physical Metaphor
,”
IEEE Trans. Syst., Man, Cybern., Part A
,
32
(
6
), pp.
705
723
.
30.
Masoud
,
A.
,
2010
, “
Kinodynamic Motion Planning
,”
IEEE Rob. Autom. Mag.
,
17
(
1
), pp.
85
99
.
31.
Masoud
,
A. A.
,
2009
, “
A Harmonic Potential Field Approach for Navigating a Rigid, Nonholonomic Robot in a Cluttered Environment
,”
IEEE International Conference on Robotics and Automation
(
ICRA '09
), Kobe, Japan, May 12–17, pp.
3993
3999
.
32.
Masoud
,
A. A.
,
2012
, “
A Harmonic Potential Approach for Simultaneous Planning and Control of a Generic UAV Platform
,”
J. Intell. Rob. Syst.
,
65
(
1
), pp.
153
173
.
33.
Dayawansa
,
W. P.
, and
Martin
,
C. F.
,
1999
, “
Dynamical Systems Which Undergo Switching
,”
IEEE Trans. Autom. Control
,
44
(
4
), pp.
751
760
.
34.
Sun
,
Z.
, and
Ge
,
S. S.
,
2011
,
Stability Theory of Switched Dynamical Systems
,
Springer
,
London
.
35.
Lasalle
,
J.
,
1960
, “
Some Extensions of Liapunov's Second Method
,”
IRE Trans. Circuit Theory
,
7
(
4
), pp.
520
527
.
36.
Langton
,
C. G.
,
1990
, “
Computation at the Edge of Chaos: Phase Transitions and Emergent Computation
,”
Phys. D
,
42
(
1–3
), pp.
12
37
.
You do not currently have access to this content.