In this paper, a gain-scheduled controller design method is proposed for linear parameter varying (LPV) stochastic systems subject to H performance constraint. Applying the stochastic differential equation, the stochastic behaviors of system are described via multiplicative noise terms. Employing the gain-scheduled design technique, the stabilization problem of LPV stochastic systems is discussed. Besides, the H attenuation performance is employed to constrain the effect of external disturbance. Based on the Lyapunov function and Itô's formula, the sufficient conditions are derived to propose the stability criteria for LPV stochastic systems. The derived sufficient conditions are converted into linear matrix inequality (LMI) problems that can be solved by using convex optimization algorithm. Through solving these conditions, the gain-scheduled controller can be obtained to guarantee asymptotical stability and H performance of LPV stochastic systems. Finally, numerical examples are provided to demonstrate the applications and effectiveness of the proposed controller design method.

References

References
1.
Johansen
,
T. A.
,
Hunt
,
K. J.
, and
Fritz
,
H.
,
1998
, “
A Software Environment for Gain Scheduled Controller Design
,”
IEEE Control Syst.
,
18
(
2
), pp.
48
60
.
2.
Silvestre
,
C.
, and
Pascoal
,
A.
,
2004
, “
Control of the INFANTE AUV Using Gain Scheduled Static Output Feedback
,”
Control Eng. Pract.
,
12
(
12
), pp.
1501
1509
.
3.
Johansen
,
T. A.
,
Petersen
,
I.
,
Kalkkuhl
,
J.
, and
Lüdemann
,
J.
,
2003
, “
Gain-Scheduled Wheel Slip Control in Automotive Brake Systems
,”
IEEE Trans. Control Syst. Technol.
,
11
(
6
), pp.
799
811
.
4.
Yue
,
T.
,
Wang
,
L.
, and
Ai
,
J.
,
1998
, “
Gain Self-Scheduled H∞ Control for Morphing Aircraft in the Wing Transition Process Based on an LPV Model
,”
Chin. J. Aeronaut.
,
26
(
4
), pp.
909
917
.
5.
Yoon
,
M. G.
,
Ugrinovskii
,
V. A.
, and
Pszczel
,
M.
,
2007
, “
Gain-Scheduling of Minimax Optimal State-Feedback Controllers for Uncertain LPV Systems
,”
IEEE Trans. Autom. Control
,
52
(
2
), pp.
311
317
.
6.
Blanchini
,
F.
,
Casagrande
,
D.
,
Miani
,
S.
, and
Viaro
,
U.
,
2010
, “
Stable LPV Realization of Parametric Transfer Functions and Its Application to Gain-Scheduling Control Design
,”
IEEE Trans. Autom. Control
,
55
(
10
), pp.
2271
2281
.
7.
Montagner
,
V. F.
,
Oliveira
,
R. C. L. F.
,
Leite
,
V. J. S.
, and
Peres
,
P. L. D.
,
2005
, “
LMI Approach for H∞ Linear Parameter-Varying State Feedback Control
,”
IEE Proc. Control Theory Appl.
,
152
(
2
), pp.
195
201
.
8.
Oliveira
,
R. C. L. F.
,
de Oliveira
,
M. C.
, and
Peres
,
P. L. D.
,
2009
, “
Special Time-Varying Lyapunov Function for Robust Stability Analysis of Linear Parameter Varying Systems With Bounded Parameter Variation
,”
IET Control Theory Appl.
,
3
(
10
), pp.
1448
1461
.
9.
Liu
,
L.
,
Wei
,
X.
, and
Liu
,
X.
,
2007
, “
LPV Control for the Air Path System of Diesel Engines
,”
IEEE
International Conference on Control and Automation
, Guangzhou, China, May 30–June 1, pp.
873
878
.
10.
Daafouz
,
J.
,
Bernussou
,
J.
, and
Geromel
,
J. C.
,
2008
, “
On Inexact LPV Control Design of Continuous-Time Polytopic Systems
,”
IEEE Trans. Autom. Control
,
53
(
7
), pp.
1674
1678
.
11.
Wu
,
F.
, and
Grigoriadis
,
K. M.
,
2001
, “
LPV Systems With Parameter-Varying Time Delays: Analysis and Control
,”
Automatica
,
37
(
2
), pp.
221
229
.
12.
Sloth
,
C.
,
Esbensen
,
T.
, and
Stoustrup
,
J.
,
2011
, “
Robust and Fault-Tolerant Linear Parameter-Varying Control of Wind Turbines
,”
Mechatronics
,
21
(
4
), pp.
645
659
.
13.
Chisci
,
L.
,
Falugi
,
P.
, and
Zappa
,
G.
,
2003
, “
Set-Point Tracking for a Class of Constrained Nonlinear Systems With Application to a CSTR
,” 42nd
IEEE
Conference on Decision and Control
, Maui, HI, Dec. 9–12, Vol.
4
, pp.
3930
3935
.
14.
Yaesh
,
I.
,
Boyarski
,
S.
, and
Shaked
,
U.
,
2003
, “
Probability-Guaranteed Robust H∞ Performance Analysis and State-Feedback Design
,”
Syst. Control Lett.
,
48
(
5
), pp.
351
364
.
15.
Jeung
,
E. T.
,
Kim
,
J. H.
, and
Park
,
H. B.
,
1998
, “
H∞-Output Feedback Controller Design for Linear Systems With Time-Varying Delayed State
,”
IEEE Trans. Autom. Control
,
43
(
7
), pp.
971
974
.
16.
Gahinet
,
P.
,
Apkarian
,
P.
, and
Chilali
,
M.
,
1996
, “
Affine Parameter-Dependent Lyapunov Functions and Real Parametric Uncertainty
,”
IEEE Trans. Autom. Control
,
41
(
3
), pp.
436
442
.
17.
Lee
,
S. H.
, and
Lim
,
J. T.
,
2000
, “
Switching Control of H∞ Gain Scheduled Controllers in Uncertain Nonlinear Systems
,”
Automatica
,
36
(
7
), pp.
1067
1074
.
18.
Qin
,
W.
, and
Wang
,
Q.
,
2007
, “
Using Stochastic Linear-Parameter-Varying Control for CPU Management of Internet Servers
,”
46th IEEE Conference on Decision and Control
, New Orleans, LA, pp.
3824
3829
.
19.
Liu
,
J.
,
Hu
,
Y.
, and
Lin
,
Z.
,
2013
, “
State-Feedback H∞ Control for LPV System Using T-S Fuzzy Linearization Approach
,”
Math. Probl. Eng.
,
2013
, p.
169454
.
20.
Eli
,
G.
,
Uri
,
S.
, and
Isaac
,
Y.
,
2005
,
H∞ Control and Estimation of State-Multiplicative Linear Systems
,
Springer
,
London
.
21.
Dragan
,
V.
,
Morozan
,
T.
, and
Stoica
,
A. M.
,
2013
,
Mathematical Methods in Robust Control of Linear Stochastic Systems
,
Springer
,
New York
.
22.
Allen
,
E.
,
2007
,
Modelling With Itô Stochastic Differential Equations
,
Springer
,
Lubbock, TX
.
23.
Ghaoui
,
L. E.
,
1995
, “
State-Feedback Control of Systems With Multiplicative Noise Via Linear Matrix Inequalities
,”
Syst. Control Lett.
,
24
(
3
), pp.
223
228
.
24.
Phillis
,
Y. A.
,
1989
, “
Estimation and Control of Systems With Unknown Covariance and Multiplicative Noise
,”
IEEE Trans. Autom. Control
,
34
(
10
), pp.
1075
1078
.
25.
Mao
,
X.
,
Koroleva
,
N.
, and
Rodkina
,
A.
,
1998
, “
Robust Stability of Uncertain Stochastic Differential Delay Equations
,”
Syst. Control Lett.
,
35
(
5
), pp.
325
336
.
26.
Fang
,
X.
, and
Wang
,
J.
,
2008
, “
Stochastic Observer-Based Guaranteed Cost Control for Networked Control Systems With Packet Dropouts
,”
IET Control Theory Appl.
,
2
(
11
), pp.
980
989
.
27.
Chen
,
Y. L.
, and
Chen
,
B. S.
,
1994
, “
Minimax Robust Deconvolution Filters Under Stochastic Parametric and Noise Uncertainties
,”
IEEE Trans. Signal Process.
,
42
(
1
), pp.
32
45
.
28.
Ugrinovskii
,
V. A.
, and
Petersen
,
I. R.
,
2001
, “
Robust Stability and Performance of Stochastic Uncertain Systems on an Infinite Time Interval
,”
Syst. Control Lett.
,
44
(
4
), pp.
291
308
.
29.
Xu
,
S.
, and
Chen
,
T.
,
2004
, “
H∞ Output Feedback Control for Uncertain Stochastic System With Time-Varying Delays
,”
Automatica
,
40
(
12
), pp.
2091
2098
.
30.
Ma
,
L.
,
Wang
,
Z.
,
Bo
,
Y.
, and
Guo
,
Z.
,
2011
, “
A Game Theory Approach to Mixed H2/H∞ Control for a Class of Stochastic Time-Varying Systems With Randomly Occurring Nonlinearities
,”
Syst. Control Lett.
,
60
(
12
), pp.
1009
1015
.
31.
Liu
,
J.
,
Hu
,
Y.
,
Chang
,
T.
,
Yang
,
T.
,
Lin
,
Z.
, and
Li
,
M.
,
2014
, “
Stability and Stabilization of Stochastic Linear Parameter Varying T-S Fuzzy System
,”
19th International Conference on Methods and Models in Automation and Robotics
, Miedzyzdroje, Poland, pp.
40
45
.
32.
Boyd
,
S.
,
Ghaoui
,
L. E.
,
Feron
,
E.
, and
Balakrishnan
,
V.
,
1994
,
Linear Matrix Inequalities in System and Control Theory
,
SIAM
,
Philadelphia
.
You do not currently have access to this content.