In this paper, we consider the problem of formation control of multi-agent systems in three-dimensional (3D) space, where the desired formation is dynamic. This is motivated by applications where the formation size and/or geometric shape needs to vary in time. Using a single-integrator model and rigid graph theory, we propose a new control law that exponentially stabilizes the origin of the nonlinear, interagent distance error dynamics and ensures tracking of the desired, 3D time-varying formation. Extensions to the formation maneuvering problem and double-integrator model are also discussed. The formation control is illustrated with a simulation of eight agents forming a dynamic cube.

References

References
1.
Gazi
,
V.
, and
Passino
,
K. M.
,
2011
,
Swarm Stability and Optimization
,
Springer-Verlag
,
Berlin
.10.1007/978-3-642-18041-5
2.
Ren
,
W.
, and
Beard
,
R. W.
,
2008
,
Distributed Consensus in Multi-Vehicle Cooperative Control
,
Springer-Verlag
,
London
.10.1007/978-1-84800-015-5
3.
Ren
,
W.
, and
Cao
,
Y.
,
2011
,
Distributed Coordination of Multi-Agent Networks: Emergent Problems, Models, and Issues
,
Springer-Verlag
,
London
.10.1007/978-0-85729-169-1
4.
Summers
,
T. H.
,
Yu
,
C.
,
Dasgupta
,
S.
, and
Anderson
,
B. D. O.
,
2011
, “
Control of Minimally Persistent Leader-Remote-Follower and Coleader Formations in the Plane
,”
IEEE Trans. Autom. Control
,
56
(
12
), pp.
2778
2792
.10.1109/TAC.2011.2146890
5.
Anderson
,
B. D. O.
,
Yu
,
C.
,
Fidan
,
B.
, and
Hendrickx
,
J. M.
,
2008
, “
Rigid Graph Control Architectures for Autonomous Formations
,”
IEEE Control Syst. Mag.
,
28
(
6
), pp.
48
63
.10.1109/MCS.2008.929280
6.
Cai
,
X.
, and
de Queiroz
,
M.
,
2012
, “
On the Stabilization of Planar Multi-Agent Formations
,”
ASME
Paper No. DSCC2012-MOVIC2012-8534.10.1115/DSCC2012-MOVIC2012-8534
7.
Cao
,
M.
,
Morse
,
A. S.
,
Yu
,
C.
,
Anderson
,
B. D. O.
, and
Dasgupta
,
S.
,
2011
, “
Maintaining a Directed, Triangular Formation of Mobile Autonomous Agents
,”
Commun. Inf. Syst.
,
11
(
1
), pp.
1
16
.10.4310/CIS.2011.v11.n1.a1
8.
Dörfler
,
F.
, and
Francis
,
B.
,
2010
, “
Geometric Analysis of the Formation Problem for Autonomous Robots
,”
IEEE Trans. Autom. Control
,
55
(
10
), pp.
2379
2384
.10.1109/TAC.2010.2053735
9.
Krick
,
L.
,
Broucke
,
M. E.
, and
Francis
,
B. A.
,
2009
, “
Stabilization of Infinitesimally Rigid Formations of Multi-Robot Networks
,”
Int. J. Control
,
82
(
3
), pp.
423
439
.10.1080/00207170802108441
10.
Oh
,
K.-K.
, and
Ahn
,
H.-S.
,
2011
, “
Formation Control of Mobile Agents Based on Inter-Agent Distance Dynamics
,”
Automatica
,
47
(
10
), pp.
2306
2312
.10.1016/j.automatica.2011.08.019
11.
Cai
,
X.
, and
de Queiroz
,
M.
,
2014
, “
Rigidity-Based Stabilization of Multi-Agent Formations
,”
ASME J. Dyn. Syst., Meas., Control
,
136
(
1
), p.
014502
.10.1115/1.4025242
12.
Oh
,
K.-K.
, and
Ahn
,
H.-S.
,
2014
, “
Distance-Based Undirected Formations of Single-Integrator and Double-Integrator Modeled Agents in n-Dimensional Space
,”
Int. J. Robust Nonlinear Control
,
24
(
12
), pp.
1809
1820
.10.1002/rnc.2967
13.
Kang
,
S.-M.
,
Park
,
M.-C.
,
Lee
,
B.-H.
, and
Ahn
,
H.-S.
,
2014
, “
Distance-Based Formation Control With a Single Moving Leader
,”
American Control Conference
(
ACC
), Portland, OR, June 4–6, pp.
305
310
.10.1109/ACC.2014.6858587
14.
Oh
,
K.-K.
, and
Ahn
,
H.-S.
,
2011
, “
Distance-Based Control of Cycle-Free Persistent Formations
,”
IEEE International Symposium on Intelligent Control
(
ISIC
), Denver, CO, Sept. 28–30, pp.
816
821
.10.1109/ISIC.2011.6045392
15.
Cai
,
X.
, and
de Queiroz
,
M.
,
2013
, “
Multi-Agent Formation Maintenance and Target Tracking
,”
American Control Conference (ACC)
, Washington, DC, June 17–19, pp. 2537–2532.
16.
Cai
,
X.
, and
de Queiroz
,
M.
,
2015
, “
Formation Maneuvering and Target Interception for Multi-Agent Systems Via Rigid Graphs
,”
Asian J. Control
,
17
(
6
), pp.
1
13
.10.1002/asjc.1044
17.
Asimow
,
L.
, and
Roth
,
B.
,
1979
, “
The Rigidity of Graphs, II
,”
J. Math. Anal. Appl.
,
68
(
1
), pp.
171
190
.10.1016/0022-247X(79)90108-2
18.
Izmestiev
,
I.
,
2009
,
Infinitesimal Rigidity of Frameworks and Surfaces
(Lectures on Infinitesimal Rigidity),
Kyushu University
,
Fukuoka, Japan
.
19.
Roth
,
B.
,
1981
, “
Rigid and Flexible Frameworks
,”
Am. Math. Monthly
,
88
(
1
), pp.
6
21
.10.2307/2320705
20.
Jackson
,
B.
,
2007
, “
Notes on the Rigidity of Graphs
,”
Levico Conference Notes
, Levico Terme, Italy, Oct. 22–26.
21.
Connelly
,
R.
,
2005
, “
Generic Global Rigidity
,”
Discrete Comput. Geom.
,
33
(
4
), pp.
549
563
.10.1007/s00454-004-1124-4
22.
Aspnes
,
J.
,
Egen
,
T.
,
Goldenberg
,
D. K.
,
Morse
,
A. S.
,
Whiteley
,
W.
,
Yang
,
Y. R.
,
Anderson
,
B. D. O.
, and
Belhumeur
,
P. N.
,
2006
, “
A Theory of Network Localization
,”
IEEE Trans. Mobile Comput.
,
5
(
12
), pp.
1663
1678
.10.1109/TMC.2006.174
23.
Ben-Israel
,
A.
, and
Greville
,
T. N. E.
,
2003
,
Generalized Inverses: Theory and Applications
,
Springer-Verlag
,
New York
.
24.
Khalil
,
H. K.
,
2002
,
Nonlinear Systems
,
Prentice Hall
,
Englewood Cliffs, NJ
.
25.
Krstic
,
M.
,
Kanellakopoulos
,
I.
, and
Kokotovic
,
P.
,
1995
,
Nonlinear and Adaptive Control Design
,
Wiley
,
New York
.
You do not currently have access to this content.