Real-time estimation of battery internal states and physical parameters is of the utmost importance for intelligent battery management systems (BMS). Electrochemical models, derived from the principles of electrochemistry, are arguably more accurate in capturing the physical mechanism of the battery cells than their counterpart data-driven or equivalent circuit models (ECM). Moreover, the electrochemical phenomena inside the battery cells are coupled with the thermal dynamics of the cells. Therefore, consideration of the coupling between electrochemical and thermal dynamics inside the battery cell can be potentially advantageous for improving the accuracy of the estimation. In this paper, a nonlinear adaptive observer scheme is developed based on a coupled electrochemical–thermal model of a Li-ion battery cell. The proposed adaptive observer scheme estimates the distributed Li-ion concentration and temperature states inside the electrode, and some of the electrochemical model parameters, simultaneously. These states and parameters determine the state of charge (SOC) and state of health (SOH) of the battery cell. The adaptive scheme is split into two separate but coupled observers, which simplifies the design and gain tuning procedures. The design relies on a Lyapunov's stability analysis of the observers, which guarantees the convergence of the combined state-parameter estimates. To validate the effectiveness of the scheme, both simulation and experimental studies are performed. The results show that the adaptive scheme is able to estimate the desired variables with reasonable accuracy. Finally, some scenarios are described where the performance of the scheme degrades.

References

References
1.
Hatzell
,
K. B.
,
Sharma
,
A.
, and
Fathy
,
H. K.
,
2012
, “
A Survey of Long-Term Health Modeling, Estimation, and Control of Lithium-Ion Batteries: Challenges and Opportunities
,”
American Control Conference
(
ACC
), Montreal, Canada, June 27–29, pp.
584
591
.10.1109/ACC.2012.6315578
2.
Saha
,
B.
,
Goebel
,
K.
,
Poll
,
S.
, and
Christophersen
,
J.
,
2007
, “
An Integrated Approach to Battery Health Monitoring Using Bayesian Regression and State Estimation
,”
IEEE
Autotestcon Conference
, Baltimore, MD, Sept. 17–20, pp.
646
653
.10.1109/AUTEST.2007.4374280
3.
Ng
,
K. S.
,
Moo
,
C.
,
Chen
,
Y.
, and
Hsieh
,
Y.
,
2009
, “
Enhanced Coulomb Counting Method for Estimating State-of-Charge and State-of-Health of Lithium-Ion Batteries
,”
Appl. Energy
,
86
(
9
), pp.
1506
1511
.10.1016/j.apenergy.2008.11.021
4.
Plett
,
G. L.
,
2004
, “
Extended Kalman Filtering for Battery Management Systems of LiPB-Based HEV Battery Packs: Part 3. State and Parameter Estimation
,”
J. Power Sources
,
134
(
2
), pp.
277
292
.10.1016/j.jpowsour.2004.02.033
5.
Remmlinger
,
J.
,
Buchholz
,
M.
,
Meiler
,
M.
,
Bernreuter
,
P.
, and
Dietmayer
,
K.
,
2011
, “
State-of-Health Monitoring of Lithium-Ion Batteries in Electric Vehicles by On-Board Internal Resistance Estimation
,”
J. Power Sources
,
196
(
12
), pp.
5357
5363
.10.1016/j.jpowsour.2010.08.035
6.
Kim
,
I.
-
S.
,
2010
, “
A Technique for Estimating the State of Health of Lithium Batteries Through a Dual-Sliding-Mode Observer
,”
IEEE Trans. Power Electron.
,
25
(
4
), pp.
1013
1022
.10.1109/TPEL.2009.2034966
7.
Gould
,
C. R.
,
Bingham
,
C. M.
,
Stone
,
D. A.
, and
Bentley
,
P.
,
2009
, “
New Battery Model and State-of-Health Determination Through Subspace Parameter Estimation and State-Observer Techniques
,”
IEEE Trans. Veh. Technol.
,
58
(
8
), pp.
3905
3916
.10.1109/TVT.2009.2028348
8.
Chaturvedi
,
N. A.
,
Klein
,
R.
,
Christensen
,
J.
,
Ahmed
,
J.
, and
Kojic
,
A.
,
2010
, “
Algorithms for Advanced Battery-Management Systems
,”
IEEE Control Syst. Mag.
,
30
(
3
), pp.
49
68
.10.1109/MCS.2010.936293
9.
Doyle
,
M.
,
Fuller
,
T. F.
, and
Newman
,
J.
,
1993
, “
Modeling of Galvanostatic Charge and Discharge of the Lithium/Polymer/Insertion Cell
,”
J. Electrochem. Soc.
,
140
(
6
), pp.
1526
1533
.10.1149/1.2221597
10.
Kehs
,
M. A.
,
Beeney
,
M. D.
, and
Fathy
,
H. K.
,
2014
, “
Computational Efficiency of Solving the DFN Battery Model Using Descriptor Form With Legendre Polynomials and Galerkin Projections
,”
American Control Conference
(
ACC
), Portland, OR, June 4–6, pp.
260
267
.10.1109/ACC.2014.6858858
11.
Smith
,
K. A.
,
Rahn
,
C. D.
, and
Wang
,
C.
,
2010
, “
Model-Based Electrochemical Estimation and Constraint Management for Pulse Operation of Lithium Ion Batteries
,”
IEEE Trans. Control Syst. Technol.
,
18
(
3
), pp.
654
663
.10.1109/TCST.2009.2027023
12.
Klein
,
R.
,
Chaturvedi
,
N. A.
,
Christensen
,
J.
,
Ahmed
,
J.
,
Findeisen
,
R.
, and
Kojic
,
A.
,
2013
, “
Electrochemical Model Based Observer Design for a Lithium-Ion Battery
,”
IEEE Trans. Control Syst. Technol.
,
21
(
2
), pp.
289
301
.10.1109/TCST.2011.2178604
13.
Forman
,
J. C.
,
Bashash
,
S.
,
Stein
,
J. L.
, and
Fathy
,
H. K.
,
2011
, “
Reduction of an Electrochemistry-Based Li-Ion Battery Model Via Quasi-Linearization and Pade Approximation
,”
J. Electrochem. Soc.
,
158
(
2
), pp.
A93
A101
.10.1149/1.3519059
14.
Docimo
,
D. J.
,
Ghanaatpishe
,
M.
, and
Fathy
,
H. K.
,
2014
, “
Development and Experimental Parameterization of a Physics-Based Second-Order Lithium-Ion Battery Model
,”
ASME
Paper No. DSCC2014-6270.10.1115/DSCC2014-6270
15.
Santhanagopalan
,
S.
, and
White
,
R. E.
,
2006
, “
Online Estimation of the State of Charge of a Lithium Ion Cell
,”
J. Power Sources
,
161
(
2
), pp.
1346
1355
.10.1016/j.jpowsour.2006.04.146
16.
Domenico
,
D.
,
Stefanopoulou
,
A.
, and
Fiengo
,
G.
,
2010
, “
Lithium-Ion Battery State of Charge and Critical Surface Charge Estimation Using an Electrochemical Model-Based Extended Kalman Filter
,”
ASME J. Dyn. Syst., Meas., Control
,
132
(
6
), p.
061302
.10.1115/1.4002475
17.
Moura
,
S. J.
,
Chaturvedi
,
N. A.
, and
Krstic
,
M.
,
2012
, “
PDE Estimation Techniques for Advanced Battery Management Systems—Part I: SOC Estimation
,”
American Control Conference (ACC)
, pp.
559
565
.
18.
Dey
,
S.
, and
Ayalew
,
B.
,
2014
, “
Nonlinear Observer Designs for State-of-Charge Estimation of Lithium-Ion Batteries
,”
American Control Conference
(
ACC
), Portland, OR, June 4–6, pp.
248
253
.10.1109/ACC.2014.6858766
19.
Dey
,
S.
,
Ayalew
,
B.
, and
Pisu
,
P.
, “
Nonlinear Robust Observers for State-of-Charge Estimation of Lithium-Ion Cells Based on a Reduced Electrochemical Model
,”
IEEE Trans. Control Syst. Technol.
(online).10.1109/TCST.2014.2382635
20.
Samadi
,
M. F.
,
Alavi
,
S. M.
, and
Saif
,
M.
,
2013
, “
Online State and Parameter Estimation of the Li-Ion Battery in a Bayesian Framework
,”
American Control Conference
(
ACC
), Washington, DC, June 17–19, pp.
4693
4698
.10.1109/ACC.2013.6580563
21.
Schmidt
,
A. P.
,
Bitzer
,
M.
,
Imre
,
Á. W.
, and
Guzzella
,
L.
,
2010
, “
Model-Based Distinction and Quantification of Capacity Loss and Rate Capability Fade in Li-Ion Batteries
,”
J. Power Sources
,
195
(
22
), pp.
7634
7638
.10.1016/j.jpowsour.2010.06.011
22.
Fang
,
H.
,
Wang
,
Y.
,
Sahinoglu
,
Z.
,
Wada
,
T.
, and
Hara
,
S.
,
2013
, “
Adaptive Estimation of State of Charge for Lithium-Ion Batteries
,”
American Control Conference (ACC)
, pp.
3485
3491
.
23.
Fang
,
H.
,
Wang
,
Y.
,
Sahinoglu
,
Z.
,
Wada
,
T.
, and
Hara
,
S.
,
2014
, “
State of Charge Estimation for Lithium-Ion Batteries: An Adaptive Approach
,”
Control Eng. Pract.
,
25
, pp.
45
54
.10.1016/j.conengprac.2013.12.006
24.
Moura
,
S. J.
,
Chaturvedi
,
N. A.
, and
Krstic
,
M.
,
2013
, “
Adaptive PDE Observer for Battery SOC/SOH Estimation Via an Electrochemical Model
,”
ASME J. Dyn. Syst., Meas., Control
,
136
(
1
), p. 011015.10.1115/1.4024801
25.
Wang
,
Y.
,
Fang
,
H.
,
Sahinoglu
,
Z.
,
Wada
,
T.
, and
Hara
,
S.
,
2013
, “
Nonlinear Adaptive Estimation of the State of Charge for Lithium-Ion Batteries
,”
52nd Annual Conference on Decision and Control
, pp.
4405
4410
.
26.
Wang
,
Y.
,
Fang
,
H.
,
Sahinoglu
,
Z.
,
Wada
,
T.
, and
Hara
,
S.
,
2015
, “
Adaptive Estimation of the State of Charge for Lithium-Ion Batteries: Nonlinear Geometric Observer Approach
,”
IEEE Trans. Control Syst. Technol.
,
23
(
3
), pp.
948
962
.10.1109/TCST.2014.2356503
27.
Dey
,
S.
,
Ayalew
,
B.
, and
Pisu
,
P.
,
2014
, “
Combined Estimation of State-of-Charge and State-of-Health of Li-Ion Battery Cells Using SMO on Electrochemical Model
,”
13th International Workshop on Variable Structure Systems
, Nantes, France, June 29–July 2, pp.
1
6
.
28.
Zhou
,
X.
,
Ersal
,
T.
,
Stein
,
J. L.
, and
Bernstein
,
D. S.
,
2013
, “
Battery Health Diagnostics Using Retrospective-Cost Subsystem Identification: Sensitivity to Noise and Initialization Errors
,”
ASME
Paper No. DSCC2013-3953.10.1115/DSCC2013-3953
29.
Zhou
,
X.
,
Ersal
,
T.
,
Stein
,
J. L.
, and
Bernstein
,
D. S.
,
2014
, “
Battery State of Health Monitoring by Side Reaction Current Density Estimation Via Retrospective-Cost Subsystem Identification
,”
ASME
Paper No. DSCC2014-6254.10.1115/DSCC2014-6254
30.
Debert
,
M.
,
Colin
,
G.
,
Bloch
,
G.
, and
Chamaillard
,
Y.
,
2013
, “
An Observer Looks at the Cell Temperature in Automotive Battery Packs
,”
Control Eng. Pract.
,
21
(
8
), pp.
1035
1042
.10.1016/j.conengprac.2013.03.001
31.
Lin
,
X.
,
Perez
,
H. E.
,
Mohan
,
S.
,
Siegel
,
J. B.
,
Stefanopoulou
,
A. G.
,
Ding
,
Y.
, and
Castanier
,
M. P.
,
2014
, “
A Lumped-Parameter Electro-Thermal Model for Cylindrical Batteries
,”
J. Power Sources
,
257
, pp.
1
11
.10.1016/j.jpowsour.2014.01.097
32.
Lin
,
X.
,
Perez
,
H. E.
,
Siegel
,
J. B.
,
Stefanopoulou
,
A. G.
,
Li
,
Y.
,
Anderson
,
R. D.
,
Ding
,
Y.
, and
Castanier
,
M. P.
,
2013
, “
Online Parameterization of Lumped Thermal Dynamics in Cylindrical Lithium Ion Batteries for Core Temperature Estimation and Health Monitoring
,”
IEEE Trans. Control Syst. Technol.
,
21
(
5
), pp.
1745
1755
.10.1109/TCST.2012.2217143
33.
Kim
,
Y.
,
Mohan
,
S.
,
Siegel
,
J. B.
,
Stefanopoulou
,
A. G.
, and
Ding
,
Y.
,
2014
, “
The Estimation of Temperature Distribution in Cylindrical Battery Cells Under Unknown Cooling Conditions
,”
IEEE Trans. Control Syst. Technol.
,
22
(
6
), pp.
2277
2286
.10.1109/TCST.2014.2309492
34.
Lin
,
X.
,
Fu
,
H.
,
Perez
,
H. E.
,
Siegel
,
J. B.
,
Stefanopoulou
,
A. G.
,
Ding
,
Y.
, and
Castanier
,
M. P.
,
2013
, “
Parameterization and Observability Analysis of Scalable Battery Clusters for Onboard Thermal Management
,”
Oil Gas Sci. Technol.
,
68
(
1
), pp.
165
178
.10.2516/ogst/2012075
35.
Tanim
,
T. R.
,
Rahn
,
C. D.
,
Wang
,
C.-Y.
,
2015
, “
State of Charge Estimation of a Lithium Ion Cell Based on a Temperature Dependent and Electrolyte Enhanced Single Particle Model
,”
Energy
,
80
(
1
), pp.
731
739
.10.1016/j.energy.2014.12.031
36.
Klein
,
R.
,
Chaturvedi
,
N. A.
,
Christensen
,
J.
,
Ahmed
,
J.
,
Findeisen
,
R.
, and
Kojic
,
A.
,
2010
, “
State Estimation of a Reduced Electrochemical Model of a Lithium-Ion Battery
,”
American Control Conference
(
ACC
), Baltimore, MD, June 30–July 2, pp.
6618
6623
.10.1109/ACC.2010.5531378
37.
Bandhauer
,
T. M.
,
Garimella
,
S.
, and
Fuller
,
T. F.
,
2011
, “
A Critical Review of Thermal Issues in Lithium-Ion Batteries
,”
J. Electrochem. Soc.
,
158
(
3
), pp.
R1
R25
.10.1149/1.3515880
38.
Dey
,
S.
,
Ayalew
,
B.
, and
Pisu
,
P.
,
2014
, “
Adaptive Observer Design for a Li-Ion Cell Based on Coupled Electrochemical-Thermal Model
,”
ASME
Paper No. DSCC2014-5986.10.1115/DSCC2014-5986
39.
Guo
,
M.
,
Sikha
,
G.
, and
White
,
R. E.
,
2011
, “
Single-Particle Model for a Lithium-Ion Cell: Thermal Behavior
,”
J. Electrochem. Soc.
,
158
(
2
), pp.
A122
A132
.10.1149/1.3521314
40.
Ramadass
,
P.
,
Haran
,
B.
,
White
,
R.
, and
Popov
,
B. N.
,
2003
, “
Mathematical Modeling of the Capacity Fade of Li-Ion Cells
,”
J. Power Sources
,
123
(
2
), pp.
230
240
.10.1016/S0378-7753(03)00531-7
41.
Smith
,
K.
, and
Wang
,
C. Y.
,
2006
, “
Power and Thermal Characterization of a Lithium-Ion Battery Pack for Hybrid-Electric Vehicles
,”
J. Power Sources
,
160
(
1
), pp.
662
673
.10.1016/j.jpowsour.2006.01.038
42.
Rahimian
,
S. K.
,
Rayman
,
S.
, and
White
,
R. E.
,
2013
, “
Extension of Physics-Based Single Particle Model for Higher Charge–Discharge Rates
,”
J. Power Sources
,
224
, pp.
180
194
.10.1016/j.jpowsour.2012.09.084
43.
Luo
,
W.
,
Lyu
,
C.
,
Wang
,
L.
, and
Zhang
,
L.
,
2013
, “
A New Extension of Physics-Based Single Particle Model for Higher Charge–Discharge Rates
,”
J. Power Sources
,
241
, pp.
295
310
.10.1016/j.jpowsour.2013.04.129
44.
Tanim
,
T. R.
,
Rahn
,
C. D.
, and
Wang
,
C. Y.
,
2014
, “
A Temperature Dependent, Single Particle, Lithium Ion Cell Model Including Electrolyte Diffusion
,”
ASME J. Dyn. Syst., Meas., Control
,
137
(
1
), p.
011005
.10.1115/1.4028154
45.
Vetter
,
J.
,
Novák
,
P.
,
Wagner
,
M. R.
,
Veit
,
C.
,
Möller
,
K.-C.
,
Besenhard
,
J. O.
,
Winter
,
M.
,
Wohlfahrt-Mehrens
,
M.
,
Vogler
,
C.
, and
Hammouche
,
A.
,
2005
, “
Ageing Mechanisms in Lithium-Ion Batteries
,”
J. Power Sources
,
147
(
1–2
), pp.
269
281
.10.1016/j.jpowsour.2005.01.006
46.
Cho
,
Y. M.
, and
Rajamani
,
R.
,
1997
, “
A Systematic Approach to Adaptive Observer Synthesis for Nonlinear Systems
,”
IEEE Trans. Autom. Control
,
42
(
4
), pp.
534
537
.10.1109/9.566664
47.
Rajamani
,
R.
, and
Hedrick
,
J. K.
,
1995
, “
Adaptive Observers for Active Automotive Suspensions: Theory and Experiment
,”
IEEE Trans. Control Syst. Technol.
,
3
(
1
), pp.
86
93
.10.1109/87.370713
48.
Slotine
,
J. J. E.
, and
Li
,
W.
,
1991
,
Applied Nonlinear Control
,
Prentice-Hall
,
Upper Saddle River, NJ
.
49.
Narendra
,
K. S.
, and
Annaswamy
,
A.
,
1989
,
Stable Adaptive Systems
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
50.
Prada
,
E.
,
Domenico
,
D.
,
Creff
,
Y.
,
Bernard
,
J.
,
Sauvant-Moynot
,
V.
, and
Huet
,
F.
,
2012
, “
Simplified Electrochemical and Thermal Model of LiFePO4–Graphite Li-Ion Batteries for Fast Charge Applications
,”
J. Electrochem. Soc.
,
159
(
9
), pp.
A1508
A1519
.10.1149/2.064209jes
51.
Arora
,
P.
,
Doyle
,
M.
,
Gozdz
,
A. S.
,
White
,
R. E.
, and
Newman
,
J.
,
2000
, “
Comparison Between Computer Simulations and Experimental Data for High-Rate Discharges of Plastic Lithium-Ion Batteries
,”
J. Power Sources
,
88
(
2
), pp.
219
231
.10.1016/S0378-7753(99)00527-3
52.
Delacourt
,
C.
, and
Safari
,
M.
,
2011
, “
Analysis of Lithium Deinsertion/Insertion in LiyFePO4 With a Simple Mathematical Model
,”
Electrochim. Acta
,
56
(
14
), pp.
5222
5229
.10.1016/j.electacta.2011.03.030
53.
Santhanagopalan
,
S.
,
Guo
,
Q.
,
Ramadass
,
P.
, and
White
,
R. E.
,
2006
, “
Review of Models for Predicting the Cycling Performance of Lithium Ion Batteries
,”
J. Power Sources
,
156
(
2
), pp.
620
628
.10.1016/j.jpowsour.2005.05.070
54.
Siegel
,
J. B.
,
Lin
,
X.
,
Stefanopoulou
,
A. G.
,
Hussey
,
D. S.
,
Jacobson
,
D. L.
, and
Gorsich
,
D.
,
2011
, “
Neutron Imaging of Lithium Concentration in LFP Pouch Cell Battery
,”
J. Electrochem. Soc.
,
158
(
5
), pp.
A523
A529
.10.1149/1.3566341
You do not currently have access to this content.