This paper proposes a planning method of the theoretically fastest slew path, and correspondingly, an analytical open-loop control law for the minimum-time eigenaxis rotation of spacecraft with three reaction wheels. The path planning and the control law are based on the angular momentum conservation of the spacecraft system. Then, a control scheme is also proposed to correct the maneuver error caused by model uncertainties. The control law and control scheme are verified in numerical simulation cases. The results show that the control law would realize the fastest slew path for an eigenaxis rotation, and the control scheme is feasible in shortening the slew time.

References

References
1.
Steyn
,
W. H.
,
1995
, “
Near-Minimum-Time Eigenaxis Rotation Maneuvers Using Reaction Wheels
,”
J. Guid., Control, Dyn.
,
18
(
5
), pp.
1184
1189
.10.2514/3.21523
2.
Bai
,
X.
, and
Junkins
,
J. L.
,
2009
, “
New Results for Time-Optimal Three-Axis Reorientation of a Rigid Spacecraft
,”
J. Guid. Control Dyn.
,
32
(
4
), pp.
1071
1076
.10.2514/1.43097
3.
Steyn
,
W. H.
,
2008
, “
A Dual-Wheel Multi-Mode Spacecraft Actuator for Near-Minimum-Time Large Angle Slew Maneuvers
,”
Aerosp. Sci. Technol.
,
12
(
7
), pp.
545
554
.10.1016/j.ast.2008.01.003
4.
Howley
,
B.
,
1996
, “
Genetic Programming of Near-Minimum-Time Spacecraft Attitude Maneuvers
,”
First Annual Conference on Genetic and Evolutionary Computation
, MIT, Cambridge, MA.
5.
Wie
,
B.
, and
Barba
,
P. M.
,
1985
, “
Quaternion Feedback for Spacecraft Large Angle Maneuvers
,”
J. Guid., Control, Dyn.
,
8
(
3
), pp.
360
365
.10.2514/3.19988
6.
Van den bosch
,
P. P. J.
,
Jongkind
,
W.
, and
Van Swieten
,
A. C. M.
,
1986
, “
Adaptive Attitude Control for Large-Angle Slew Maneuvers
,”
Automatica
,
22
(
2
), pp.
209
215
.10.1016/0005-1098(86)90082-8
7.
Kim
,
B. J.
,
Lee
,
H.
, and
Choi
,
S. D.
,
1996
, “
Three-Axis Reaction Wheel Attitude Control System for KITSAT-3 Microsatellite
,”
Space Technol.-Kedlington
,
16
(
5
), pp.
291
296
.10.1016/S0892-9270(96)00026-7
8.
Wie
,
B.
,
Weiss
,
H.
, and
Arapostathis
,
A.
,
1989
, “
Quaternion Feedback Regulator for Spacecraft Eigenaxis Rotations
,”
J. Guid., Control, Dyn.
,
12
(
3
), pp.
375
380
.10.2514/3.20418
9.
Byers
,
R. M.
, and
Vadali
,
S. R.
,
1993
, “
Quasi-Closed-Form Solution to the Time-Optimal Rigid Spacecraft Reorientation Problem
,”
J. Guid., Control, Dyn.
,
16
(
3
), pp.
453
461
.10.2514/3.21031
10.
Wie
,
B.
,
Bailey
,
D.
, and
Heiberg
,
C.
,
2002
, “
Rapid Multitarget Acquisition and Pointing Control of Agile Spacecraft
,”
J. Guid., Control, Dyn.
,
25
(
1
), pp.
96
104
.10.2514/2.4854
11.
Jan
,
Y. W.
, and
Chiou
,
J. C.
,
2004
, “
Minimum-Time Spacecraft Maneuver Using Sliding-Mode Control
,”
Acta Astronaut.
,
54
(
1
), pp.
69
75
.10.1016/S0094-5765(03)00194-2
12.
Bang
,
H.
,
Tahk
,
M.
, and
Choi
,
H.
,
2003
, “
Large Angle Attitude Control of Spacecraft With Actuator Saturation
,”
Control Eng. Pract.
,
11
(
9
), pp.
989
997
.10.1016/S0967-0661(02)00216-2
13.
Wie
,
B.
, and
Lu
,
J.
,
1995
, “
Feedback Control Logic for Spacecraft Eigenaxis Rotations Under Slew Rate and Control Constraints
,”
J. Guid., Control, Dyn.
,
18
(
6
), pp.
1372
1379
.10.2514/3.21555
14.
Verbin
,
D.
,
Lappas
,
V. J.
, and
Ben-Asher
,
J. Z.
,
2011
, “
Time-Efficient Angular Steering Laws for Rigid Satellite
,”
J. Guid., Control, Dyn.
,
34
(
3
), pp.
878
892
.10.2514/1.48154
15.
Fisher
,
J.
, and
Vadali
,
S. R.
,
2008
, “
Gyroless Attitude Control of Multibody Satellites Using an Unscented Kalman Filter
,”
J. Guid., Control, Dyn.
,
31
(
1
), pp.
245
251
.10.2514/1.30566
16.
Romano
,
M.
, and
Agrawal
,
B. N.
,
2004
, “
Attitude Dynamics/Control of a Dual-Body Spacecraft With Variable-Speed Control Moment Gyros
,”
J. Guid., Control, Dyn.
,
27
(
4
), pp.
513
525
.10.2514/1.2564
17.
McIntyre
,
J. E.
, and
Gianelli
,
M. J.
,
1971
, “
Bearing Axis Wobble for a Dual Spin Vehicle
,”
J. Spacecr. Rockets
,
8
(
9
), pp.
945
951
.10.2514/3.30336
18.
Fernandes
,
C.
,
Gurvits
,
L.
, and
Li
,
Z.
,
1994
, “
Near-Optimal Nonholonomic Motion Planning for a System of Coupled Rigid Bodies
,”
IEEE Trans. Autom. Control
,
39
(
3
), pp.
450
463
.10.1109/9.280745
19.
Ma
,
O.
,
Dang
,
H.
, and
Pham
,
K.
,
2008
, “
On-Orbit Identification of Inertia Properties of Spacecraft Using a Robotic Arm
,”
J. Guid., Control, Dyn.
,
31
(
6
), pp.
1761
1771
.10.2514/1.35188
20.
Bergmann
,
E.
, and
Dzielski
,
J.
,
1990
, “
Spacecraft Mass Property Identification With Torque-Generating Control
,”
J. Guid., Control, Dyn.
,
13
(
1
), pp.
99
103
.10.2514/3.20522
21.
Elias
,
L. M.
,
Kwon
,
D. W.
, and
Sedwick
,
R. J.
,
2007
, “
Electromagnetic Formation Flight Dynamics Including Reaction Wheel Gyroscopic Stiffening Effects
,”
J. Guid., Control, Dyn.
,
30
(
2
), pp.
499
511
.10.2514/1.18679
22.
Mi
,
W.
,
Wu
,
Z.
, and
Qian
,
J.
,
2012
, “
A Decentralized Adaptive Controller Design for Lower Extremity Rehabilitation Robot
,”
10th World Congress on Intelligent Control and Automation (WCICA)
, IEEE, Beijing, China, July 6–8.
23.
Bilimoria
,
K. D.
, and
Wie
,
B.
,
1993
, “
Time-Optimal Three-Axis Reorientation of a Rigid Spacecraft
,”
J. Guid., Control, Dyn.
,
16
(
3
), pp.
446
452
.10.2514/3.21030
You do not currently have access to this content.