In machining process, chatter is an unstable dynamic phenomenon which causes overcut and quick tool wear, etc. To avoid chatter, traditional methods aim to optimize machining parameters. But they have inherent disadvantage in gaining highly efficient machining. Active magnetic bearing (AMB) is a promising technology for machining on account of low wear and friction, low maintenance cost, and long operating life. The control currents applied to AMBs allow not only to stabilize the supported spindle but also to actively suppress chatter in milling process. This paper, for the first time, studies an integrated control scheme for stability of milling process with a spindle supported by AMBs. First, to eliminate the vibration of an unloaded spindle rotor during acceleration/deceleration, we present an optimal controller with proper compensation for speed variation. Next, the controller is further enhanced by adding an adaptive algorithm based on Fourier series analysis to actively suppress chatter in milling process. Finally, numerical simulations show that the stability lobe diagram (SLD) boundary can be significantly expanded. Also, a practical issue of constraints on controller output is discussed.

References

References
1.
Schweitzer
,
G.
,
Bleuler
,
H.
,
Maslen
,
E. H.
,
Cole
,
M.
,
Keogh
,
P.
,
Larsonneur
,
R.
,
Maslen
,
E.
,
Okada
,
Y.
,
Schweitzer
,
G.
, and
Traxler
,
A.
,
2009
,
Magnetic Bearings: Theory, Design, and Application to Rotating Machinery
,
Springer
,
Heidelberg, Berlin
.
2.
Mushi
,
S. E.
,
Lin
,
Z.
, and
Allaire
,
P. E.
,
2012
, “
Design, Construction, and Modeling of a Flexible Rotor Active Magnetic Bearing Test Rig
,”
IEEE/ASME Trans. Mechatronics
,
17
(
6
), pp.
1170
1182
.
3.
Ahrens
,
M.
,
Kucera
,
L.
, and
Larsonneur
,
R.
,
1996
, “
Performance of a Magnetically Suspended Flywheel Energy Storage Device
,”
IEEE Trans. Control Syst. Technol.
,
4
(
5
), pp.
494
502
.
4.
Matsumura
,
F.
, and
Yoshimoto
,
T.
,
1986
, “
System Modeling and Control Design of a Horizontal-Shaft Magnetic-Bearing System
,”
IEEE Trans. Magn.
,
22
(
3
), pp.
196
203
.
5.
Kimman
,
M. H.
,
Langen
,
H. H.
, and
Munnig Schmidt
,
R. H.
,
2010
, “
A Miniature Milling Spindle With Active Magnetic Bearings
,”
Mechatronics
,
20
(
2
), pp.
224
235
.
6.
Lang
,
O.
,
Wassermann
,
J.
, and
Springer
,
H.
,
1996
, “
Adaptive Vibration Control of a Rigid Rotor Supported by Active Magnetic Bearings
,”
ASME J. Eng. Gas Turbines Power
,
118
(
4
), pp.
825
829
.
7.
Balini
,
H. M. N. K.
,
Scherer
,
C. W.
, and
Witte
,
J.
,
2011
, “
Performance Enhancement for AMB Systems Using Unstable H∞ Controllers
,”
IEEE Trans. Control Syst. Technol.
,
19
(
6
), pp.
1479
1492
.
8.
Knospe
,
C. R.
, and
Fittro
,
R. L.
,
1997
, “
Control of a High Speed Machining Spindle Via μ-Synthesis
,”
IEEE
International Conference on Control Applications
, Hartford, CT, Oct. 5–7, pp.
912
917
.
9.
Fittro
,
R. L.
, and
Knospe
,
C. R.
,
2002
, “
The μ Approach to Control of Active Magnetic Bearings
,”
ASME J. Eng. Gas Turbines Power.
,
124
(
3
), pp.
566
570
.
10.
Maslen
,
E. H.
, and
Sawicki
,
J. T.
,
2007
, “
Mu-Synthesis for Magnetic Bearings: Why Use Such a Complicated Tool?
,”
ASME
Paper No. IMECE2007-43910.
11.
Auchet
,
S.
,
Chevrier
,
P.
,
Lacour
,
M.
, and
Lipinski
,
P.
,
2004
, “
A New Method of Cutting Force Measurement Based on Command Voltages of Active Electro-Magnetic Bearings
,”
Int. J. Mach. Tools Manuf.
,
44
(
14
), pp.
1441
1449
.
12.
Khanfir
,
H.
,
Bonis
,
M.
, and
Revel
,
P.
,
2005
, “
Improving Waviness in Ultra Precision Turning by Optimizing the Dynamic Behavior of a Spindle With Magnetic Bearings
,”
Int. J. Mach. Tools Manuf.
,
45
(
7–8
), pp.
841
848
.
13.
Abele
,
E.
,
Schiffler
,
A.
, and
Rothenbucher
,
S.
,
2007
, “
System Identification During Milling Via Active Magnetic Bearing
,”
Prod. Eng.
,
1
(
3
), pp.
309
314
.
14.
Altintas
,
Y.
,
2000
,
Manufacturing Automation: Metal Cutting Mechanics, Machine Tool Vibrations, and CNC Design
,
Cambridge University Press
,
Cambridge, UK
.
15.
Insperger
,
T.
, and
Stepan
,
G.
,
2004
, “
Updated Semi-Discretization Method for Periodic Delay-Differential Equations With Discrete Delay
,”
Int. J. Numer. Methods Eng.
,
61
(
1
), pp.
117
141
.
16.
Huang
,
T.
,
Zhang
,
X.
,
Zhang
,
X.
, and
Ding
,
H.
,
2013
, “
An Efficient Linear Approximation of Acceleration Method for Milling Stability Prediction
,”
Int. J. Mach. Tools Manuf.
,
74
, pp.
56
64
.
17.
Yilmaz
,
A.
,
AL-Regib
,
E.
, and
Ni
,
J.
,
2002
, “
Machine Tool Chatter Suppression by Multi-Level Random Spindle Speed Variation
,”
ASME J. Manuf. Sci. Eng
,
124
(
2
), pp.
208
216
.
18.
Zatarain
,
M.
,
Bediaga
,
I.
,
Munoa
,
J.
, and
Lizarralde
,
R.
,
2008
, “
Stability of Milling Processes With Continuous Spindle Speed Variation: Analysis in the Frequency and Time Domains, and Experimental Correlation
,”
CIRP Ann.-Manuf. Technol.
,
57
(
1
), pp.
379
384
.
19.
Altintas
,
Y.
,
Engin
,
S.
, and
Budak
,
E.
,
1999
, “
Analytical Stability Prediction and Design of Variable Pitch Cutters
,”
ASME J. Manuf. Sci. Eng
,
121
(
2
), pp.
173
178
.
20.
Kyung
,
J.-H.
, and
Lee
,
C.-W.
,
2003
, “
Controller Design for a Magnetically Suspended Milling Spindle Based on Chatter Stability Analysis
,”
JSME Int. J., Ser. C
,
46
(
2
), pp.
416
422
.
21.
Chen
,
M.
, and
Knospe
,
C. R.
,
2007
, “
Control Approaches to the Suppression of Machining Chatter Using Active Magnetic Bearings
,”
IEEE Trans. Control Syst. Technol.
,
15
(
2
), pp.
220
233
.
22.
Fittro
,
R. L.
,
Knospe
,
C. C.
, and
Stephens
,
L. S.
,
2003
, “
μ Synthesis Applied to the Compliance Minimization of an Active Magnetic Bearing HSM Spindle's Thrust Axis
,”
Mach. Sci. Technol.
,
7
(
1
), pp.
19
51
.
23.
van Dijk
,
N. J.
,
van de Wouw
,
N.
,
Doppenberg
,
E. J.
,
Oosterling
,
H. A.
, and
Nijmeijer
,
H.
,
2012
, “
Robust Active Chatter Control in the High-Speed Milling Process
,”
IEEE Trans. Control Syst. Technol.
,
20
(
4
), pp.
901
917
.
24.
Chen
,
Z.
,
Zhang
,
H.-T.
,
Zhang
,
X.
, and
Ding
,
H.
,
2014
, “
Adaptive Active Chatter Control in Milling Processes
,”
ASME J. Dyn. Syst., Meas., Control
,
136
(
2
), p.
021007
.
25.
Insperger
,
T.
,
Wahi
,
P.
,
Colombo
,
A.
,
Stepan
,
G.
,
Di Bernardo
,
M.
, and
Hogan
,
S.
,
2010
, “
Full Characterization of Act-and-Wait Control for First-Order Unstable Lag Processes
,”
J. Vib. Control
,
16
(
7–8
), pp.
1209
1233
.
26.
Zhang
,
H.-T.
,
Wu
,
Y.
,
He
,
D.
, and
Zhao
,
H.
,
2015
, “
Model Predictive Control to Mitigate Chatters in Milling Processes With Input Constraints
,”
Int. J. Mach. Tools Manuf.
,
91
(
1
), pp.
54
61
.
27.
Gourc
,
E.
,
Seguy
,
S.
, and
Dessein
,
G.
,
2011
, “
Dynamical Modeling of Spindle With Active Magnetic Bearing for Milling Process
,”
Adv. Mater. Res.
,
423
, pp.
200
209
.
28.
Fittro
,
R. L.
,
1998
, “
A High Speed Machining Spindle With Active Magnetic Bearings: Control Theory, Design and Application
,” Ph.D. dissertation, University of Virginia, Charlottesville, VA.
You do not currently have access to this content.