Offline robot dynamic identification methods are based on the use of the inverse dynamic identification model (IDIM), which calculates the joint forces/torques (estimated as the product of the known control signal (the input reference of the motor current loop) with the joint drive gains) that are linear in relation to the dynamic parameters, and on the use of the linear least squares technique to calculate the parameters (IDIM-LS technique). However, as actuation-redundant parallel robots are overactuated, their IDIM has an infinity of solution for the force/torque prediction, depending on the value of the desired overconstraint that is a priori unknown in the identification process. As a result, the IDIM cannot be used as it is for such a class of parallel robots. This paper proposes a procedure for the dynamic parameter identification of actuation-redundant parallel robots. The procedure takes advantage of two possible modified formulations for the IDIM of actuation-redundant robots that can be used for identification purpose. The modified IDIM formulations project some or all input torques/forces onto the robot bodies, thus leading to a unique solution of the model that can then be used in the identification process. A systematic and straightforward way to compute these modified IDIM is presented. The identification of the inertial parameters of a planar parallel robot with actuation redundancy, the DualV, is then carried out using these modified IDIM. Experimental results show the validity of the methods.

References

References
1.
Merlet
,
J.
,
2006
,
Parallel Robots
,
2nd ed.
,
Springer
,
New York
.
2.
Yi
,
B.
,
Freeman
,
R.
, and
Tesar
,
D.
,
1994
, “
Force and Stiffness Transmission in Redundantly Actuated Mechanisms: The Case for a Spherical Shoulder Mechanism
,”
Rob., Spat. Mech., Mech. Syst.
,
45
, pp.
163
172
.
3.
Kurtz
,
R.
, and
Hayward
,
V.
,
1992
, “
Multiple-Goal Kinematic Optimization of a Parallel Spherical Mechanism With Actuator Redundancy
,”
IEEE Trans. Rob. Autom.
,
8
(
5
), pp.
644
651
.
4.
Nahon
,
M. A.
, and
Angeles
,
J.
,
1989
, “
Force Optimization in Redundantly-Actuated Closed Kinematic Chains
,”
International Conference on Robotics and Automation
, Scottsdale, AZ, May 14–19, pp.
951
956
.
5.
Muller
,
A.
,
2005
, “
Internal Preload Control of Redundantly Actuated Parallel Manipulators—Its Application to Backlash Avoiding Control
,”
IEEE Trans. Rob.
,
21
(
4
), pp.
668
677
.
6.
Cheng
,
H.
,
Yiu
,
Y.-K.
, and
Li
,
Z.
,
2003
, “
Dynamics and Control of Redundantly Actuated Parallel Manipulators
,”
IEEE/ASME Trans. Mechatronics
,
8
(
4
), pp.
483
491
.
7.
Hanon
,
M. A.
,
1995
, “
Comparison of Methods for the Control of Redundantly-Actuated Robotic Systems
,”
J. Intell. Rob. Syst.
,
14
, pp.
3
21
.
8.
Muller
,
A.
,
2005
, “
Internal Prestress Control of Redundantly Actuated Parallel Manipulators Its Application to Backlash Avoiding Control
,”
IEEE Trans. Rob.
,
21
(
4
), pp.
668
677
.
9.
Khalil
,
W.
,
Gautier
,
M.
, and
Lemoine
,
P.
,
2007
, “
Identification of the Payload Inertial Parameters of Industrial Manipulators
,” IEEE
ICRA,
Rome, Italy, Apr. 10–14, pp.
4943
4948
.
10.
de Wit
,
C. C.
, and
Aubin
,
A.
,
1990
, “
Parameters Identification of Robots Manipulators Via Sequential Hybrid Estimation Algorithms
,”
IFAC Congress,
pp.
178
183
.
11.
Antonelli
,
G.
,
Caccavale
,
F.
, and
Chiacchio
,
P.
,
1999
, “
A Systematic Procedure for the Identification of Dynamic Parameters of Robot Manipulators
,”
Robotica
,
17
(
4
), pp.
427
435
.
12.
Kozlowski
,
K.
,
1998
,
Modelling and Identification in Robotics
,
Springer
,
London
.
13.
Hollerbach
,
J.
,
Khalil
,
W.
, and
Gautier
,
M.
,
2008
,
Handbook of Robotics—Model Identification
,
Springer
,
New York
.
14.
Khalil
,
W.
, and
Dombre
,
E.
,
2002
,
Modeling, Identification and Control of Robots
,
Hermes Penton
,
London
.
15.
Khosla
,
P.
, and
Kanade
,
T.
,
1988
, “
Parameter Identification of Robot Dynamics
,”
24th IEEE CDC
, pp.
1754
1760
.
16.
Lu
,
Z.
,
Shimoga
,
K.
, and
Goldenberg
,
A.
,
1993
, “
Direct Calculation of Minimum Set of Inertial Parameters of Serial Robots
,”
J. Rob. Syst.
,
10
(
8
), pp.
1009
1029
.
17.
Restrepo
,
P.
, and
Gautier
,
M.
,
1995
, “
Calibration of Drive Chain of Robot Joints
,”
Fourth
IEEE
Conference on Control Applications, Albany, NY, Sept. 28–29, pp.
526
531
.
18.
Corke
,
P.
,
1996
, “
In Situ Measurement of Robot Motor Electrical Constants
,”
Robotica
,
23
(
14
), pp.
433
436
.
19.
Gautier
,
M.
, and
Briot
,
S.
,
2014
, “
Global Identification of Joint Drive Gains and Dynamic Parameters of Robots
,”
ASME J. Dyn. Sys. Meas. Control
,
136
(
5
), p.
051025
.
20.
Hufnagel
,
T.
, and
Müller
,
A.
,
2012
, “
A Projection Method for the Elimination of Contradicting Decentralized Control Forces in Redundantly Actuated PKM
,”
IEEE Trans. Rob.
,
28
(
3
), pp.
723
728
.
21.
van der Wijk
,
V.
,
Krut
,
S.
,
Pierrot
,
F.
, and
Herder
,
J.
,
2011
, “
Generic Method for Deriving the General Shaking Force Balance Conditions of Parallel Manipulators With Application to a Redundant Planar 4-RRR Parallel Manipulator
,”
13th World Congress in Mechanism and Machine Science
, pp. 1822–1827.
22.
Briot
,
S.
,
Gautier
,
M.
, and
Krut
,
S.
,
2013
, “
Dynamic Parameter Identification of Actuation Redundant Parallel Robots: Application to the DualV
,”
IEEE/RSJ
International Conference on Intelligent Robots and Systems, Wollongong, NSW, July 9–12, pp. 637–643.
23.
Briot
,
S.
, and
Gautier
,
M.
,
2012
, “
Global Identification of Drive Gains and Dynamic Parameters of Parallel Robots—Part 1: Theory
,”
19th CISM-IFToMM Symposium on Robot Design, Dynamics, and Control (RoManSy)
, pp. 93–100.
24.
Pfurner
,
M.
, and
Husty
,
M.
,
2010
, “
Implementation of a New and Efficient Algorithm for the Inverse Kinematics of Serial 6R Chains
,”
New Trends in Mechanism Science
,
Springer
,
New York
, pp.
91
98
.
25.
Briot
,
S.
, and
Arakelian
,
V.
,
2008
, “
Optimal Force Generation of Parallel Manipulators for Passing Through the Singular Positions
,”
Int. J. Rob. Res.
,
27
(
8
), pp.
967
983
.
26.
Nenchev
,
D. N.
,
Bhattacharya
,
S.
, and
Uchiyama
,
M.
,
1997
, “
Dynamic Analysis of Parallel Manipulators Under the Singularity-Consistent Parameterization
,”
Robotica
,
15
(
4
), pp.
375
384
.
27.
Gautier
,
M.
,
1997
, “
Dynamic Identification of Robots With Power Model
,”
IEEE ICRA
, Albuquerque, NM, Apr. 20–25, pp.
1922
1927
.
28.
Gautier
,
M.
,
1991
, “
Numerical Calculation of the Base Inertial Parameters
,”
J. Rob. Syst.
,
8
(
4
), pp.
485
506
.
29.
Diaz-Rodriguez
,
M.
,
Mata
,
V.
,
Valera
,
A.
, and
Page
,
A.
,
2010
, “
A Methodology for Dynamic Parameters Identification of 3-D of Parallel Robots in Terms of Relevant Parameters
,”
Mech. Mach. Theory
,
45
(9), pp.
1337
1356
.
30.
Khalil
,
W.
, and
Ibrahim
,
O.
,
2007
, “
General Solution for the Dynamic Modeling of Parallel Robots
,”
J. Intell. Rob. Syst.
,
49
(
1
), pp.
19
37
.
31.
Gautier
,
M.
,
Vandanjon
,
P.
, and
Presse
,
C.
,
1994
, “
Identification of Inertial and Drive Gain Parameters of Robots
,”
IEEE CDC
, Lake Buena Vista, FL, Dec. 14–16, pp.
3764
3769
.
You do not currently have access to this content.