This paper proposes a feedback control system for curing thick film resins using ultraviolet (UV) radiation. A model-based distributed parameter control scheme is constructed for addressing the challenge of achieving through cure while reducing temperature gradients in thick films in composite laminates. The UV curing process is modeled with a parabolic partial differential equation (PDE) that includes an in-domain radiative input along with a nonlinear spatial attenuation function. The control problem is first cast as a distributed temperature trajectory-tracking problem where only surface temperature measurements are available. By transforming the original process model to an equivalent boundary input problem, backstepping boundary PDE control designs are applied to explicitly obtain both the controller and the observer gain kernels. Offline optimization may be used to generate the desired temperature trajectory, considering quality constraints such as prespecified spatial gradients and UV source limitations. The workings and the performance of the proposed control scheme are illustrated through simulations of the process model. It is shown that feedforward compensation can be added to achieve improved tracking with the PDE controller in the presence of measurement noise and other process disturbances.

References

References
1.
Wenbin
,
H.
,
Tsui
,
L. Y.
, and
Haiqing
,
G.
,
2005
, “
A Study of the Staircase Effect Induced by Material Shrinkage in Rapid Prototyping
,”
Rapid Prototyping J.
,
11
(
2
), pp.
82
89
.
2.
Cunico
,
M. W. M.
, and
de Carvalho
,
J.
,
2013
, “
Optimization of Thick Layers Photopolymerization Systems Applying Experimental and Analytical Approach
,”
Rapid Prototyping J.
,
19
(
5
), pp.
337
343
.
3.
Lucintel
,
2014
, “
Growth Opportunities in Carbon Fiber Market 2010–2015
,” http://www.lucintel.com/carbon_fiber_market.aspx
4.
U.S. Department of Energy
,
2011
, “
FY 2011 Vehicle Technologies Program, Funding Opportunity Number: DE-FOA-0000239
,” http://www.cooley.com/files/announce_cleantech/20101230-VTP-FOA-FY11.pdf
5.
Duan
,
Y.
,
Li
,
J.
,
Zhong
,
W.
,
Maguire
,
R. G.
,
Zhao
,
G.
,
Xie
,
H.
,
Li
,
D.
, and
Lu
,
B.
,
2012
, “
Effects of Compaction and UV Exposure on Performance of Acrylate/Glass–Fiber Composites Cured Layer by Layer
,”
J. Appl. Polym. Sci.
,
123
(
6
), pp.
3799
3805
.
6.
Dufour
,
P.
,
Michaud
,
D. J.
,
Touré
,
Y.
, and
Dhurjati
,
P. S.
,
2004
, “
A Partial Differential Equation Model Predictive Control Strategy: Application to Autoclave Composite Processing
,”
Comput. Chem. Eng.
,
28
(
4
), pp.
545
556
.
7.
Thostenson
,
E. T.
, and
Chou
,
T.-W.
,
2001
, “
Microwave and Conventional Curing of Thick-Section Thermoset Composite Laminates: Experiment and Simulation
,”
Polym. Compos.
,
22
(
2
), pp.
197
212
.
8.
Kumar
,
P. K.
,
Raghavendra
,
N. V.
, and
Sridhara
,
B. K.
,
2011
, “
Development of Infrared Radiation Curing for Fiber Reinforced Polymer Composites: An Experimental Investigation
,”
Indian J. Eng. Mater. Sci.
,
18
(
1
), pp.
24
30
.
9.
Beziers
,
D.
,
Capdepuy
,
B.
, and
Chataignier
,
E.
,
1990
, “
Electron Beam Curing of Composites
,”
Developments in the Science and Technology of Composite Materials
,
Springer
,
The Netherlands
, pp.
73
78
.
10.
Berejka
,
A. J.
,
Cleland
,
M. R.
,
Galloway
,
R. A.
, and
Gregoire
,
O.
,
2005
, “
X-Ray Curing of Composite Materials
,”
Nucl. Instrum. Methods Phys. Res., Sect. B
,
241
(
1
), pp.
847
849
.
11.
Compston
,
P.
,
Schiemer
,
J.
, and
Cvetanovska
,
A.
,
2008
, “
Mechanical Properties and Styrene Emission Levels of a UV-Cured Glass–Fibre/Vinylester Composite
,”
Compos. Struct.
,
86
(
1
), pp.
22
26
.
12.
Drobny
,
J. G.
,
2010
,
Radiation Technology for Polymers
,
CRC Press
,
New York
.
13.
Endruweit
,
A.
,
Ruijter
,
W.
,
Johnson
,
M. S.
, and
Long
,
A. C.
,
2008
, “
Transmission of Ultraviolet Light Through Reinforcement Fabrics and Its Effect on Ultraviolet Curing of Composite Laminates
,”
Polym. Compos.
,
29
(
7
), pp.
818
829
.
14.
Wang
,
X.
,
2001
, “
Modeling of In-Situ Laser Curing of Thermoset–Matrix Composites in Filament Winding
,” Ph.D. dissertation, University of Nebraska, Lincoln, NE.
15.
Perry
,
M. F.
, and
Young
,
G. W.
,
2005
, “
A Mathematical Model for Photopolymerization From a Stationary Laser Light Source
,”
Macromol, Theory Simul
,
14
(
1
), pp.
26
39
.
16.
Parthasarathy
,
S.
,
Mantell
,
S. C.
, and
Stelson
,
K. A.
,
2004
, “
Estimation, Control and Optimization of Curing in Thick-Sectioned Composite Parts
,”
ASME J. Dyn. Syst. Meas. Control
,
126
(
4
), pp.
824
833
.
17.
Pillai
,
V. K.
,
Beris
,
A. N.
, and
Dhurjati
,
P. S.
,
1994
, “
Implementation of Model-Based Optimal Temperature Profiles for Autoclave Curing of Composites Using a Knowledge-Based System
,”
Ind. Eng. Chem. Res.
,
33
(
10
), pp.
2443
2452
.
18.
Soucy
,
K. A.
,
1991
, “
Process Modeling, State Estimation, and Feedback Control of Polymer Composite Processing
,” Ph.D. dissertation, Washington University, Seattle, WA.
19.
Christofides
,
P. D.
, and
Daoutidis
,
P.
,
1997
, “
Finite-Dimensional Control of Parabolic PDE Systems Using Approximate Inertial Manifolds
,”
J. Math. Anal. Appl.
,
216
(
2
), pp.
398
420
.
20.
Baker
,
J.
, and
Christofides
,
P. D.
,
2000
, “
Finite-Dimensional Approximation and Control of Non-Linear Parabolic PDE Systems
,”
Int. J. Control
,
73
(
5
), pp.
439
456
.
21.
Varshney
,
A.
,
Pitchaiah
,
S.
, and
Armaou
,
A.
,
2009
, “
Feedback Control of Dissipative PDE Systems Using Adaptive Model Reduction
,”
AIChE J.
,
55
(
4
), pp.
906
918
.
22.
Balas
,
M. J.
,
1979
, “
Feedback Control of Linear Diffusion Processes
,”
Int. J. Control
,
29
(
3
), pp.
523
534
.
23.
Krstic
,
M.
, and
Smyshlyaev
,
A.
,
2008
,
Boundary Control of PDEs: A Course on Backstepping Designs
,
Society for Industrial Mathematics
,
Philadelphia
.
24.
Curtain
,
R. F.
, and
Zwart
,
H. J.
,
1995
,
An Introduction to Infinite-Dimensional Linear Systems Theory
,
Springer-Verlag
,
New York
.
25.
Vazquez
,
R.
, and
Krstic
,
M.
,
2008
, “
Control of 1-D Parabolic PDEs With Volterra Nonlinearities, Part I: Design
,”
Automatica
,
44
(
11
), pp.
2778
2790
.
26.
Tsubakino
,
D.
,
Krstic
,
M.
, and
Hara
,
S.
,
2012
, “
Backstepping Control for Parabolic PDEs With In-Domain Actuation
,”
American Control Conference (ACC)
, pp.
2226
2231
.
27.
Yebi
,
A.
, and
Ayalew
,
B.
,
2013
, “
Feedback Compensation of the In-Domain Attenuation of Inputs in Diffusion Processes
,”
American Control Conference
(
ACC
), pp.
2092
2097
.
28.
Matias
,
J. M.
,
Bartolo
,
P. J.
, and
Pontes
,
A. V.
,
2009
, “
Modeling and Simulation of Photofabrication Processes Using Unsaturated Polyester Resins
,”
J. Appl. Polym. Sci.
,
114
(
6
), pp.
3673
3685
.
29.
Hong
,
W.
,
Lee
,
Y. T.
, and
Gong
,
H.
,
2004
, “
Thermal Analysis of Layer Formation in a Stepless Rapid Prototyping Process
,”
Appl. Therm. Eng.
,
24
(
2
), pp.
255
268
.
30.
Shi
,
W.
, and
Rånby
,
B.
,
1994
, “
UV Curing of Composites Based on Modified Unsaturated Polyester
,”
J. Appl. Polym. Sci.
,
51
(
6
), pp.
1129
1139
.
31.
Schwalm
,
R.
,
2006
,
UV Coatings: Basics, Recent Developments and New Applications
,
Elsevier
,
Amsterdam
.
32.
Badkoubeh
,
A.
, and
Zhu
,
G.
,
2011
, “
Tracking Control of a Linear Parabolic PDE With In-Domain Point Actuators
,”
World Acad. Sci. Eng. Technol.
,
59
(
6
), pp.
574
579
.
33.
Knabner
,
P.
, and
Angerman
,
L.
,
2003
,
Numerical Methods for Elliptic and Parabolic Partial Differential Equations
,
Springer Verlag
,
New York
.
34.
Soga
,
H.
,
1974
, “
Boundary Value Problems With Oblique Derivative
,”
Publ. Res. Inst. Math. Sci.
,
10
(
3
), pp.
619
668
.
35.
Smyshlyaev
,
A.
, and
Krstic
,
M.
,
2010
,
Adaptive Control of Parabolic PDEs
,
Princeton University Press
,
Princeton, NJ
.
36.
Smyshlyaev
,
A. S.
,
2006
, “
Explicit and Parameter-Adaptive Boundary Control Laws for Parabolic Partial Differential Equations
,” Ph.D. thesis, University of California, San Diego, CA.
37.
Hidayat
,
Z.
,
Babuska
,
R.
,
De Schutter
,
B.
, and
Nunez
,
A.
,
2011
, “
Observers for Linear Distributed-Parameter Systems: A Survey
,”
2011 IEEE International Symposium on Robotic and Sensors Environments
(
ROSE
), Montreal, Canada, Sept. 17–18, pp.
166
171
.
38.
Yebi
,
A.
,
Ayalew
,
B.
, and
Dey
,
S.
,
2014
, “
Observer Design for State Estimation for UV Curing Process
,”
ASME
Paper No. DSCC2014-6024.
39.
Dehghan
,
M.
,
2001
, “
An Inverse Problem of Finding a Source Parameter in a Semilinear Parabolic Equation
,”
Appl. Math. Model.
,
25
(
9
), pp.
743
754
.
40.
Recktenwald
,
G. W.
,
2004
, “
Finite-Difference Approximations to the Heat Equation
,” Mechanical Engineering Department of Portland State University, Portland, OR, Class Notes.
41.
Dubljevic
,
S.
, and
Christofides
,
P. D.
,
2006
, “
Predictive Control of Parabolic PDEs With Boundary Control Actuation
,”
Chem. Eng. Sci.
,
61
(
18
), pp.
6239
6248
.
You do not currently have access to this content.