This paper investigates a dynamic motion planning approach and an adaptive tracking control scheme for a class of two-wheeled autonomous vehicle with an underactuated pendular suspension subject to nonholonomic constraint. Compared with the wheeled inverted pendulum system, this kind of two-wheeled pendular suspension (WPS) vehicle is more suitable for autonomous exploration in the complex unstructured environment. By Lagrange principle, a four-independent-coordinate dynamic model, which can describe the multivariate, nonlinear, and underactuated characteristics of the system, is first proposed. Besides, a reduced order dynamic is developed in the following so as to tackle the nonholonomic problem, and then the three-independent-coordinate reduced order dynamic is divided into an actuated part constituted by the rotational subsystem, and an underactuated part combined by the longitudinal and the swing angle subsystems. The sliding mode control (SMC) technique is utilized to construct the controller; especially, a composite sliding mode surface is proposed which can realize the velocity tracking and oscillation suppression for pendular suspension simultaneously. Furthermore, the adaptive mechanism is employed to update the true values of the inaccessible physical parameters which can enhance the adaptability of the WPS vehicle in unstructured environment. In addition, a dynamic motion planning method is presented, by aid of which the vehicle can track an arbitrary trajectory in Cartesian coordinate. The simulation results show the effectiveness and merits of the proposed control approaches.

References

References
1.
Grasser
,
F.
,
Arrigo
,
A. D.
,
Colombi
,
S.
, and
Silvio
,
A. C.
,
2002
, “
JOE: A Mobile, Inverted Pendulum
,”
IEEE Trans. Ind. Electron.
,
49
(
1
), pp.
107
114
.10.1109/41.982254
2.
Pathak
,
K.
,
Franch
,
J.
, and
Agrawal
,
S. K.
,
2005
, “
Velocity and Position Control of a Wheeled Inverted Pendulum by Partial Feedback Linearization
,”
IEEE Trans. Rob.
,
21
(
3
), pp.
505
513
.10.1109/TRO.2004.840905
3.
Chan
,
R. P. M.
,
Stol
,
K. A.
, and
Halkyard
,
C. C.
,
2013
, “
Review of Modelling and Control of Two-Wheeled Robots
,”
Annu. Rev. Control
,
37
(
1
), pp.
89
103
.10.1016/j.arcontrol.2013.03.004
4.
Huang
,
J.
,
Ding
,
F.
,
Fukuda
,
T.
, and
Matsuno
,
T.
,
2013
, “
Modeling and Velocity Control for a Novel Narrow Vehicle Based on Mobile Wheeled Inverted Pendulum
,”
IEEE Trans. Control Syst. Technol.
,
21
(
5
), pp.
1607
1617
.10.1109/TCST.2012.2214439
5.
Xu
,
J. X.
,
Guo
,
Z. Q.
, and
Lee
,
T. H.
,
2014
, “
Design and Implementation of Integral Sliding-Mode Control on an Underactuated Two-Wheeled Mobile Robot
,”
IEEE Trans. Ind. Electron.
,
61
(
7
), pp.
3671
3681
.10.1109/TIE.2013.2282594
6.
Chiu
,
C. H.
, and
Chang
,
C. C.
,
2014
, “
Wheeled Human Transportation Vehicle Implementation Using Output Recurrent Fuzzy Control Strategy
,”
IET Control Theory Appl.
,
8
(
17
), pp.
1886
1895
.10.1049/iet-cta.2014.0243
7.
Do
,
K. D.
, and
Seet
,
G.
,
2010
, “
Motion Control of a Two-Wheeled Mobile Vehicle With an Inverted Pendulum
,”
J. Intell. Rob. Syst.: Theory Appl.
,
60
(
3–4
), pp.
577
605
.10.1007/s10846-010-9432-9
8.
Kim
,
Y.
,
Kim
,
S. H.
, and
Kwak
,
Y. K.
,
2005
, “
Dynamic Analysis of a Nonholonomic Two-Wheeled Inverted Pendulum Robot
,”
J. Intell. Rob. Syst.: Theory Appl.
,
41
(
1
), pp.
25
46
.10.1007/s10846-005-9022-4
9.
Ren
,
T. J.
,
Chen
,
T. C.
, and
Chen
,
C. J.
,
2008
, “
Motion Control for a Two-Wheeled Vehicle Using a Self-Tuning Pid Controller
,”
Control Eng. Pract.
,
16
(
3
), pp.
365
375
.10.1016/j.conengprac.2007.05.007
10.
Li
,
Z. J.
, and
Xu
,
C. Q.
,
2009
, “
Adaptive Fuzzy Logic Control of Dynamic Balance and Motion for Wheeled Inverted Pendulums
,”
Fuzzy Sets Syst.
,
160
(
12
), pp.
1787
1803
.10.1016/j.fss.2008.09.013
11.
Li
,
Z. J.
, and
Zhang
,
Y. N.
,
2010
, “
Robust Adaptive Motion/Force Control for Wheeled Inverted Pendulums
,”
Automatica
,
46
(
8
), pp.
1346
1353
.10.1016/j.automatica.2010.05.015
12.
Yang
,
C. G.
,
Li
,
Z. J.
, and
Li
,
J.
,
2013
, “
Trajectory Planning and Optimized Adaptive Control for a Class of Wheeled Inverted Pendulum Vehicle Models
,”
IEEE Trans. Cybernet.
,
43
(
1
), pp.
24
36
.10.1109/TSMCB.2012.2198813
13.
Salerno
,
A.
, and
Angeles
,
J.
,
2007
, “
A New Family of Two-Wheeled Mobile Robots: Modeling and Controllability
,”
IEEE Trans. Rob.
,
23
(
1
), pp.
169
173
.10.1109/TRO.2006.886277
14.
Yue
,
M.
,
Hu
,
P.
, and
Sun
,
W.
,
2009
, “
Path Following of a Class of Non-Holonomic Mobile Robot With Underactuated Vehicle Body
,”
IET Control Theory Appl.
,
4
(
10
), pp.
1898
1904
.10.1049/iet-cta.2009.0617
15.
Yue
,
M.
,
Sun
,
W.
, and
Hu
,
P.
,
2011
, “
Sliding Mode Robust Control for Two-Wheeled Mobile Robot With Lower Center of Gravity
,”
Int. J. Innovative Comput., Inf. Control
,
7
(
2
), pp.
637
646
.
16.
Fang
,
Y. C.
,
Dixion
,
W. E.
,
Dawson
,
D. M.
, and
Zergeroglu
,
E.
,
2003
, “
Nonlinear Coupling Control Laws for an Underactuated Overhead Crane System
,”
IEEE/ASME Trans. Mechatronics
,
8
(
3
), pp.
418
423
.10.1109/TMECH.2003.816822
17.
Fang
,
Y. C.
,
Ma
,
B. J.
,
Wang
,
P. C.
, and
Zhang
,
X. B.
,
2012
, “
A Motion Planning-Based Adaptive Control Method for an Underactuated Crane System
,”
IEEE Trans. Control Syst. Technol.
,
20
(
1
), pp.
241
248
.10.1109/TCST.2011.2107910
18.
Hu
,
Q. L.
, and
Xiao
,
B.
,
2013
, “
Output-Feedback Stabilisation Control for a Class of Under-Actuated Mechanical Systems
,”
IET Control Theory Appl.
,
7
(
7
), pp.
985
996
.10.1049/iet-cta.2012.0734
19.
Zhang
,
X. B.
,
Fang
,
Y. C.
, and
Sun
,
N.
,
2014
, “
Minimum-Time Trajectory Planning for Underactuated Overhead Crane Systems With State and Control Constraints
,”
IEEE Trans. Ind. Electron.
,
61
(
12
), pp.
6915
6925
.10.1109/TIE.2014.2320231
20.
Fang
,
Y. C.
,
Wang
,
P. C.
,
Sun
,
N.
, and
Zhang
,
Y. C.
,
2014
, “
Dynamics Analysis and Nonlinear Control of an Offshore Boom Crane
,”
IEEE Trans. Ind. Electron.
,
61
(
2
), pp.
414
427
.10.1109/TIE.2013.2251731
21.
Yang
,
C. G.
,
Li
,
Z. J.
,
Cui
,
R. X.
, and
Xu
,
B. G.
,
2014
, “
Neural Network-Based Motion Control of an Underactuated Wheeled Inverted Pendulum Model
,”
IEEE Trans. Neural Networks Learning Syst.
,
25
(
11
), pp.
2004
2016
.10.1109/TNNLS.2014.2302475
22.
Guo
,
Z. Q.
,
Xu
,
J. X.
, and
Lee
,
T. H.
,
2014
, “
Design and Implementation of a New Sliding Mode Controller on an Underactuated Wheeled Inverted Pendulum
,”
J. Franklin Inst.
,
351
(
4
), pp.
2261
2282
.10.1016/j.jfranklin.2013.02.002
23.
Cui
,
R. X.
,
Guo
,
J.
, and
Mao
,
Z. Y.
,
2014
, “
Adaptive Backstepping Control of Wheeled Inverted Pendulums Models
,”
Nonlinear Dyn.
,
79
(
1
), pp.
501
511
.10.1007/s11071-014-1682-9
24.
Yu
,
X. H.
, and
Kaynak
,
O.
,
2009
, “
Sliding-Mode Control With Soft Computing: A Survey
,”
IEEE Trans. Ind. Electron.
,
56
(
9
), pp.
3275
3285
.10.1109/TIE.2009.2027531
25.
Hu
,
Q. L.
,
Li
,
B.
, and
Qi
,
J. T.
,
2014
, “
Disturbance Observer Based Finite-Time Attitude Control for Rigid Spacecraft Under Input Saturation
,”
Aerosp. Sci. Technol.
,
39
(
1
), pp.
13
21
.10.1016/j.ast.2014.08.009
26.
Hu
,
Q. L.
, and
Xiao
,
B.
,
2013
, “
Adaptive Fault Tolerant Control Using Integral Sliding Mode Strategy With Application to Flexible Spacecraft
,”
Int. J. Syst. Sci.
,
44
(
12
), pp.
2273
2286
.10.1080/00207721.2012.702236
27.
Tao
,
G.
,
2003
,
Adaptive Control Design and Analysis
,
Wiley
,
New York
10.1002/0471459100.
28.
Jiang
,
Z. P.
,
Lefeber
,
E.
, and
Nijmeijer
,
H.
,
2001
, “
Saturated Stabilization and Tracking of a Nonholonomic Mobile Robot
,”
Syst. Control Lett.
,
42
(
5
), pp.
327
332
.10.1016/S0167-6911(00)00104-3
29.
Huang
,
J. S.
,
Wen
,
C. Y.
,
Wang
,
W.
, and
Jiang
,
Z. P.
,
2013
, “
Adaptive Stabilization and Tracking Control of a Nonholonomic Mobile Robot With Input Saturation and Disturbance
,”
Syst. Control Lett.
,
62
(
3
), pp.
234
241
.10.1016/j.sysconle.2012.11.020
30.
Yue
,
M.
,
Wu
,
G. Q.
,
Wang
,
S.
, and
An
,
C.
,
2014
, “
Disturbance Observer-Based Trajectory Tracking Control for Nonholonomic Wheeled Mobile Robot Subject to Saturated Velocity Constraint
,”
Appl. Artif. Intell.
,
28
(
8
), pp.
751
765
.10.1080/08839514.2014.952918
You do not currently have access to this content.