Positive velocity and position feedback (PVPF) is a widely used control scheme in lightly damped resonant systems with collocated sensor actuator pairs. The popularity of PVPF is due to the ability to achieve a chosen damping ratio by repositioning the poles of the system. The addition of a tracking controller, to reduce the effects of inherent nonlinearities, causes the poles to deviate from the intended location and can be a detriment to the damping achieved. By designing the PVPF and tracking controllers simultaneously, the optimal damping and tracking can be achieved. Simulations show full damping of the first resonance mode and significantly higher bandwidth than that achieved using the traditional PVPF design method, allowing for high-speed scanning with accurate tracking. Experimental results are also provided to verify performance in implementation.

References

References
1.
Moheimani
,
S. O. R.
,
2008
, “
Invited Review Article: Accurate and Fast Nanopositioning With Piezoelectric Tube Scanners: Emerging Trends and Future Challenges
,”
Rev. Sci. Instrum.
,
7
(
7
), p.
071101
.
2.
Ando
,
T.
,
Kodera
,
N.
,
Maruyama
,
D.
,
Takai
,
E.
,
Saito
,
K.
, and
Toda
,
A.
,
2002
, “
A High-Speed Atomic Force Microscope for Studying Biological Macromolecules in Action
,”
Jpn. J. Appl. Phys., Part 1
41
(
7B
), pp.
4851
4856
.
3.
Tuma
,
T.
,
Lygeros
,
J.
,
Kartik
,
V.
,
Sebastian
,
A.
, and
Pantazi
,
A.
,
2012
, “
High-Speed Multiresolution Scanning Probe Microscopy Based on Lissajous Scan Trajectories
,”
Nanotechnology
,
23
(
18
), p.
185501
.
4.
Aphale
,
S. S.
,
Fleming
,
A. J.
, and
Moheimani
,
S. O. R.
,
2007
, “
Integral Resonant Control of Collocated Smart Structures
,”
Smart Mater. Struct.
,
16
(
2
), pp.
439
446
.
5.
Preumont
,
A.
,
de Marneffe
,
B.
,
Deraemaeker
,
A.
, and
Bossens
,
F.
,
2008
, “
The Damping of a Truss Structure With a Piezoelectric Transducer
,”
Comput. Struct.
,
86
(
3–5
), pp.
227
239
.
6.
Teo
,
Y. R.
,
Russell
,
D.
,
Aphale
,
S. S.
, and
Fleming
,
A. J.
,
2014
, “
Optimal Integral Force Feedback and Structured pi Tracking Control: Application for Objective Lens Positioner
,”
Mechatronics
,
24
(
6
), pp.
701
711
.
7.
Aphale
,
S. S.
,
Bhikkaji
,
B.
, and
Moheimani
,
S. R.
,
2008
, “
Minimizing Scanning Errors in Piezoelectric Stack-Actuated Nanopositioning Platforms
,”
IEEE Trans. Nanotechnol.
,
7
(
1
), pp.
79
90
.
8.
Fanson
,
J. L.
, and
Caughey
,
T. K.
,
1990
, “
Positive Position Feedback Control for Large Space Structures
,”
AIAA J.
,
28
(
4
), pp.
717
724
.
9.
Bhikkaji
,
B.
,
Ratnam
,
M.
,
Fleming
,
A. J.
, and
Moheimani
,
S. O. R.
,
2007
, “
High-Performance Control of Piezoelectric Tube Scanners
,”
IEEE Trans. Control Syst. Technol.
,
15
(
5
), pp.
853
866
.
10.
Newcomb
,
C.
, and
Flinn
,
I.
,
1982
, “
Improving the Linearity of Piezoelectric Ceramic Actuators
,”
Electron. Lett.
,
18
(
11
), pp.
442
444
.
11.
Fleming
,
A. J.
,
2013
, “
Charge Drive With Active DC Stabilization for Linearization of Piezoelectric Hysteresis
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
,
60
(
8
), pp.
1630
1637
.
12.
Kanestrom
,
R. K.
, and
Egeland
,
O.
,
1994
, “
Nonlinear Active Vibration Damping
,”
IEEE Trans. Autom. Control
,
39
(
9
), pp.
1925
1928
.
13.
Vagia
,
M.
,
Eilsen
,
A. A.
,
Gravdahl
,
J. T.
, and
Pettersen
,
K. Y.
,
2013
, “
Design of a Nonlinear Damping Control Scheme for Nanopositioning
,”
IEEE/ASME
International Conference on Advanced Intelligent Mechatronics
, Wollongong, NSW, July 9–12.
14.
Yu
,
G.
,
Huang
,
J.
, and
Chen
,
Y.
,
2009
, “
Optimal Fuzzy Control of Piezoelectric Systems Based on Hybrid Taguchi Method and Particle Swarm Optimization
,”
IEEE
International Conference on Systems, Man, and Cybernetics
, San Antonio, TX, Oct. 11–14.
15.
Devasia
,
S.
,
Eleftheriou
,
E.
, and
Moheimani
,
S. O. R.
,
2007
, “
A Survey of Control Issues in Nanopositioning
,”
IEEE Trans. Control Syst. Technol.
,
15
(
4
), pp.
689
703
.
16.
Fleming
,
A. J.
,
2010
, “
Nanopositioning System With Force Feedback for High-Performance Tracking and Vibration Control
,”
IEEE/ASME Trans. Mechatron.
,
15
(
3
), pp.
433
447
.
17.
Sebastian
,
A.
, and
Pantazi
,
A.
,
2012
, “
Nanopositioning With Multiple Sensors: A Case Study in Data Storage
,”
IEEE Trans. Control Syst. Technol.
,
20
(
2
), pp.
382
394
.
18.
Bazaei
,
A.
,
Yong
,
Y. K.
,
Moheimani
,
S. O. R.
, and
Sebastian
,
A.
,
2012
, “
Tracking of Triangular References Using Signal Transformation for Control of a Novel AFM Scanner Stage
,”
IEEE Trans. Control Syst. Technol.
,
20
(
2
), pp.
453
464
.
19.
Fleming
,
A. J.
,
Aphale
,
S. S.
, and
Moheimani
,
S. O. R.
,
2010
, “
A New Method for Robust Damping and Tracking Control of Scanning Probe Microscope Positioning Stages
,”
IEEE Trans. Nanotechnol.
,
9
(
4
), pp.
438
448
.
20.
Namavar
,
M.
,
Fleming
,
A. J.
,
Aleyaasin
,
M.
,
Nakkeeran
,
K.
, and
Aphale
,
S. S.
,
2014
, “
An Analytical Approach to Integral Resonant Control of Second-Order Systems
,”
IEEE Trans. Mechatron.
,
19
(
2
), pp.
651
659
.
21.
McKelvey
,
T.
,
Akcay
,
H.
, and
Ljung
,
L.
,
1996
, “
Subspace Based Multivariable System Identification From Frequency Response Data
,”
IEEE Trans. Autom. Control
,
41
(
7
), pp.
960
979
.
You do not currently have access to this content.