This paper presents a systematic method on how to design the coordinated lateral and longitudinal motion control system of autonomous four wheel drive (4WD) electric vehicles for platooning and trajectory tracking. First, mathematical models that perfectly describe the behaviors of autonomous 4WD vehicles are built-up, and the coupled effects in vehicle dynamic systems are given. Second, owing to the fact that autonomous vehicles are large-scale systems with strong coupling, nonlinearities, and uncertainties, a novel multi-objective hierarchical architecture used for coordinated lateral and longitudinal motion control is constructed, which is composed of a global cooperative control layer, a control allocation layer, and an action execution layer. A robust backstepping sliding mode controller (RBSMC) is presented in the cooperative control layer to provide the resultant forces/moment. The control allocation layer is designed using interior-point (IP) algorithm to determine the tire lateral and longitudinal forces, which result in the desired resultant forces/moment. The action execution layer consists of an inverse tire model, a slip ratio regulator for each wheel, and a slip angle regulator. Finally, simulation experiments are carried out under adverse driving conditions, and the results show that the proposed control architecture not only possesses excellent tracking performance but also enhances the riding comfort, stability, and safety of autonomous 4WD electric vehicles.

References

1.
Keqiang
,
L.
,
Tao
,
C.
,
Yugong
,
L.
, and
Jianqiang
,
W.
,
2012
, “
Intelligent Environment-Friendly Vehicles: Concept and Case Studies
,”
IEEE Trans. Intell. Transp. Syst.
,
13
(
1
), pp.
318
328
.
2.
Marino
,
R.
,
Scalzi
,
S.
, and
Netto
,
M.
,
2011
, “
Nest PID Steering Control for Lane Keeping in Autonomous Vehicles
,”
Control Eng. Pract.
,
19
(
12
), pp.
1459
1467
.10.1016/j.conengprac.2011.08.005
3.
Raimondi
,
F. M.
, and
Melluso
,
M.
,
2008
, “
Fuzzy Motion Control Strategy for Cooperation of Multiple Automated Vehicles With Passengers comfort
,”
Automatica
,
44
(
11
), pp.
2804
2816
.10.1016/j.automatica.2008.04.012
4.
Wu
,
S.
,
Chiang
,
H.
, and
Perng
,
J.
,
2008
, “
The Heterogeneous Systems Integration Design and Implementation for Lane Keeping on a Vehicle
,”
IEEE Trans. Intell. Transp. Syst.
,
9
(
2
), pp.
246
263
.10.1109/TITS.2008.922874
5.
Jinghua
,
G.
,
Ping
,
H.
,
Linhui
,
L.
, and
Rongben
,
W.
,
2012
, “
Design of Automatic Steering Controller for Trajectory Tracking of Unmanned Vehicles Using Genetic Algorithms
,”
IEEE Trans. Veh. Technol.
,
61
(
7
), pp.
2913
2924
.
6.
Onieva
,
E.
,
Naranjo
,
J. E.
, and
Milanes
,
V.
,
2011
, “
Automatic Lateral Control for Unmanned Vehicles Via Genetic Algorithms
,”
Appl. Soft Comput.
,
11
(
1
), pp.
1303
1309
.10.1016/j.asoc.2010.04.003
7.
Thrun
,
S.
,
Montemerlo
,
M.
, and
Dahlkamp
,
H.
,
2006
, “
Stanley: The Robot That Won the DARPA Grand Challenge
,”
J. Field Robot.
,
23
(
9
), pp.
661
692
.10.1002/rob.20147
8.
Tan
,
H. S.
,
Bu
,
F.
, and
Bougler
,
B.
,
2007
, “
A Real-World Application of Lane-Guidance Technologies Automated Snowblower
,”
IEEE Trans. Intell. Transp. Syst.
,
8
(
3
), pp.
538
548
.
9.
Rajamani
,
R.
,
Zhu
,
C.
, and
Alexander
,
L.
,
2003
, “
Lateral of a Backward Driven Front-Steering Vehicle
,”
Control Eng. Pract.
,
11
(
5
), pp.
531
540
.10.1016/S0967-0661(02)00143-0
10.
Huang
,
J.
, and
Tomizuka
,
M.
,
2005
, “
LTV Controller Design for Vehicle Lateral Control Under Fault in Rear Sensors
,”
IEEE/ASME Trans. Mechatronics
,
10
(
1
), pp.
1
7
.
11.
Falcone
,
P.
,
Borrelli
,
F.
,
Asgari
,
J.
,
Tseng
,
H.
, and
Hrovat
,
D.
,
2007
, “
Predictive Active Steering Control for Autonomous Vehicle Systems
,”
IEEE Trans. Control Syst. Technol.
,
15
(
3
), pp.
566
580
.10.1109/TCST.2007.894653
12.
Perez
,
J.
,
Milanes
,
V.
, and
Onieva
,
E.
,
2011
, “
Cascade Architecture for Lateral Control in Autonomous Vehicles
,”
IEEE Trans. Intell. Transp. Syst.
,
12
(
1
), pp.
73
82
.10.1109/TITS.2010.2060722
13.
Enache
,
N.
,
Mammar
,
S.
,
Netto
,
M.
, and
Lusetti
,
B.
,
2010
, “
Driver Steering Assistance for Lane-Departure Avoidance Based on Hybrid Automata and Composite Lyapunov Function
,”
IEEE Trans. Intell. Transp. Syst.
,
11
(
1
), pp.
28
39
.10.1109/TITS.2009.2026451
14.
Gerdes
,
J. C.
, and
Hedrick
,
J. K.
,
1997
, “
Vehicle Speed and Spacing Control Via Coordinated Throttle and Brake Actuation
,”
Control Eng. Pract.
,
5
(
11
), pp.
1607
1614
.10.1016/S0967-0661(97)10016-8
15.
Ferrara
,
A.
, and
Vecchio
,
C.
,
2009
, “
Second Order Sliding Mode Control of Vehicles With Distributed Collision Avoidance Capabilities
,”
Mechatronics
,
19
(
4
), pp.
471
477
.10.1016/j.mechatronics.2008.11.002
16.
Nouveliere
,
L.
, and
Mammar
,
S.
,
2007
, “
Experimental Vehicle Longitudinal Control Using a Second Order Sliding Mode Technique
,”
Control Eng. Pract.
,
15
(
8
), pp.
943
954
.10.1016/j.conengprac.2006.11.011
17.
Ping
,
H.
,
Jinghua
,
G.
,
Linhui
,
L.
, and
Rongben
,
W.
,
2013
, “
A Robust Longitudinal Sliding-Mode Controller Design for Autonomous Ground Vehicle Based on Fuzzy Logic
,”
Int. J. Veh. Auton. Syst.
,
11
(
4
), pp.
368
383
.
18.
Toulotte
,
P. F.
,
Delprat
,
S.
,
Guerra
,
T. M.
, and
Boonaert
,
J.
,
2008
, “
Vehicle Spacing Control Using Robust Fuzzy Control With Pole Placement in LMI Region
,”
Eng. Appl. Artif. Intel.
,
21
(
5
), pp.
756
768
.10.1016/j.engappai.2007.07.009
19.
Peng
,
Y. F.
,
2010
, “
Adaptive Intelligent Backstepping Longitudinal Lontrol of Vehicle Platoons Using Output Recurrent Cerebellar Model Articulation Controller
,”
Expert Syst. Appl.
,
37
(
3
), pp.
2016
2027
.10.1016/j.eswa.2009.06.055
20.
Jianqiang
,
W.
,
Lei
,
Z.
,
Dezhao
,
Z.
, and
Keqiang
,
L.
,
2013
, “
An Adaptive Longitudinal Driving Assistance System Based on Driver Characteristics
,”
IEEE Trans. Intell. Transp. Syst.
,
14
(
1
), pp.
1
12
.
21.
Feng
,
G.
, and
Keqiang
,
L.
,
2007
, “
Hierarchical Switching Control of Longitudinal Acceleration With Large Uncertainties
,”
Int. J. Automot. Technol.
,
8
(
3
), pp.
351
359
.
22.
Lefebvre
,
D.
,
Chevrel
,
P.
, and
Richard
,
S.
,
2003
, “
An H-Infinity-Based Control Design Methodology Dedicated to the Active Control of Vehicle Longitudinal Oscillations
,”
IEEE Trans. Control Syst. Technol.
,
11
(
6
), pp.
948
955
.10.1109/TCST.2003.815552
23.
Bakker
,
E.
,
Nyborg
,
L.
, and
Pacejka
,
H. B.
,
1989
, “
A New Tire Model With an Application in Vehicle Dynamics Studies
,” SAE Technical Paper No. 890087.
24.
Lim
,
E. H. M.
, and
Hedrick
,
J. K.
,
1999
, “
Lateral and Longitudinal Vehicle Control Coupling for Automated Vehicle Operation
,”
Proceedings of the American Control Conference
,
San Diego
,
CA
, Jun 2–4, pp.
3676
3680
.
25.
Rajamani
,
R.
,
Tan
,
H. S.
,
Law
,
B. K.
, and
Zhang
,
W.
,
2000
, “
Demonstration of Integrated Longitudinal and Lateral Control for the Operation of Automated Vehicles in Platoons
,”
IEEE Trans. Control Syst. Technol.
,
8
(
4
), pp.
695
708
.10.1109/87.852914
26.
Lee
,
H.
, and
Tomizuka
,
M.
,
2001
, “
Coordinated Longitudinal and Lateral Motion Control of Vehicles for IVHS
,”
ASME J. Dyn. Syst., Meas., Control
,
123
(
3
), pp.
535
543
.10.1115/1.1386395
27.
Kumarawadu
,
S.
, and
Lee
,
T. T.
,
2006
, “
Neuroadaptive Combined Lateral and Longitudinal Control of Highway Using RBF Networks
,”
IEEE Trans. Intell. Transp. Syst.
,
7
(
4
), pp.
500
511
.10.1109/TITS.2006.883113
28.
Rajamani
,
R.
,
2006
,
Vehicle Dynamics and Control
,
Springer
,
Berlin
.
29.
Dugoff
,
H.
,
Francher
,
P. S.
, and
Segel
,
L.
,
1970
, “
An Analysis of Tire Traction Properties and Their Influence on Vehicle Dynamic Performance
,” SAE Technical Paper No. 700377.
30.
Guntur
,
R.
, and
Sankar
,
S.
,
1980
, “
A Friction Circle Concept for Dugoff’s Tire Friction Model
,”
Int. J. Veh. Des.
,
1
(
4
), pp.
373
377
.
31.
Krstic
,
M.
,
Kanellakopoulos
,
I.
, and
Kokotovic
,
P.
,
1995
,
Nonlinear and Adaptive Control Design
,
Wiley
,
New York
.
32.
Ola
,
H.
, and
Glad
,
S. T.
,
2005
, “
Resolving Actuator Redundancy-Optimal Control Vs Control Allocation
,”
Automatica
,
41
(
1
), pp.
137
144
.
33.
Wang
,
J.
, and
Longoria
,
R. G.
,
2009
, “
Coordinated and Reconfigurable Vehicle Dynamics Control
,”
IEEE Trans. Control Syst. Technol.
,
17
(
3
), pp.
723
732
.10.1109/TCST.2008.2002264
34.
Petersen
,
J.
, and
Bodson
,
M.
,
2006
, “
Constrained Quadratic Programming Techniques for Control Allocation
,”
IEEE Trans. Control Syst. Technol.
,
14
(
1
), pp.
91
98
.10.1109/TCST.2005.860516
35.
Ahmadi
,
J.
,
Sedigh
,
A. K.
, and
Kabganian
,
M.
,
2009
, “
Adaptive Vehicle Lateral-Plane Motion Control Using Optimal Tire Friction Forces With Saturation Limits Consideration
,”
IEEE. Trans. Veh. Technol.
,
58
(
8
), pp.
4098
4107
.10.1109/TVT.2009.2023660
You do not currently have access to this content.