In this paper, we have shown how to simplify an algorithm for the two-stage design of linear feedback controllers by reducing computational requirements. The algorithm is further simplified for linear discrete-time systems with slow and fast modes (multitime scale systems or singularly perturbed systems), providing independent and accurate designs in slow and fast time scales. The simplified design procedure and its very high accuracy are demonstrated on the eigenvalue assignment problem of a steam power system.

References

1.
Kokotovic
,
P.
,
Khalil
,
H.
, and
O'Reilly
,
J.
,
1986
,
Singular Perturbation Methods in Control: Analysis and Design
,
Academic
, Orlando, FL.
2.
Naidu
,
D.
, and
Calise
,
A.
,
2001
, “
Singular Perturbations and Time Scales in Guidance and Control of Aerospace Systems: Survey
,”
AIAA J. Guidance Control
,
24
(
6
), pp.
1057
1078
.10.2514/2.4830
3.
Hsiao
,
F. H.
,
Hwang
,
J. D.
, and
Pan
,
S. T.
,
2001
, “
Stabilization of Discrete Singularly Perturbed Systems Under Composite Observer-Based Controller
,”
ASME J. Dyn. Syst. Meas. Control
,
123
(
1
), pp.
132
139
.10.1115/1.1285759
4.
Chen
,
C. F.
,
Pan
,
S. T.
, and
Hsieh
,
J. G.
,
2002
, “
Stability Analysis of a Class of Uncertain Discrete Singularly Perturbed Systems With Multiple Time Delays
,”
ASME J. Dyn. Syst. Meas. Control
,
124
(
3
), pp.
467
472
.10.1115/1.1485098
5.
Demetriou
,
M.
, and
Kazantzis
,
N.
,
2005
, “
Natural Observer Design for Singularly Perturbed Vector Second-Order Systems
,”
ASME J. Dyn. Syst. Meas. Control
,
127
(
4
), pp.
648
655
.10.1115/1.2101847
6.
Wang
,
Z.
, and
Ghorbel
,
F.
,
2006
, “
Control of Closed Kinematic Chains Using a Singularly Perturbed Dynamics Model
,”
ASME J. Dyn. Syst. Meas. Control
,
128
(
1
), pp.
142
151
.10.1115/1.2171440
7.
Amjadifard
,
R.
,
Beheshti
,
M.
, and
Yazdanpaanah
,
M.
,
2011
, “
Robust Stabilization for a Singularly Perturbed Systems
,”
ASME J. Dyn. Syst. Meas. Control
,
133
(
5
), p.
051004
.10.1115/1.4003383
8.
Naidu
,
D.
,
2010
, “
Analysis of Non-Dimensional Forms of Singular Perturbation Structures for Hypersonic Vehicles
,”
Acta Astronaut.
,
66
(
3–4
), pp.
577
586
.10.1016/j.actaastro.2009.07.020
9.
Sinha
,
A.
,
2007
,
Linear Systems: Optimal and Robust Control
,
Francis & Taylor
,
Boca Raton, FL
.
10.
Phillips
,
R.
,
1980
, “
Reduced Order Modeling and Control of Two-Time Scale Discrete Systems
,”
Int. J. Control
,
31
(
4
), pp.
765
780
.10.1080/00207178008961081
11.
Singh
,
H.
,
Naidu
,
D.
, and
Moore
,
K.
,
1996
, “
Regional Pole Placement Method for Discrete-Time Systems
,”
AIAA J. Guidance Control
,
19
(
4
), pp.
974
976
.10.2514/3.21729
12.
Mahmoud
,
M. S.
,
Chen
,
Y.
, and
Singh
,
M.
,
1985
, “
On Eigenvalue Assignment for Discrete Systems with Fast and Slow Models
,”
Int. J. Syst. Sci.
,
16
(
1
), pp.
61
70
.10.1080/00207728508926655
13.
Kokotovic
,
P.
,
1975
, “
A Riccati Equation for Block-Diagonalization of Ill-Conditioned Systems
,”
IEEE Trans. Autom. Control
,
20
(
6
), pp.
812
814
.10.1109/TAC.1975.1101089
14.
Ferrante
,
A.
,
Pavon
,
M.
, and
Pinzoni
,
S.
,
2001
, “
Asymmetric Riccati Equation: A Homeomorphic Parametrization of the Set of Solutions
,”
Linear Algebra Appl.
,
329
(
1–3
), pp.
137
156
.10.1016/S0024-3795(01)00241-5
15.
Chen
,
T.
,
2013
,
Linear System Theory and Design
, 4th ed.,
Oxford University
,
Oxford, UK
.
16.
Gao
,
Y.-H.
, and
Bai
,
Z.-Z.
,
2010
, “
On Inexact Newton Methods Based on Doubling Iteration Scheme for Non-Symmetric Algebraic Riccati Equations
,”
Numer. Linear Algebra Appl.
,
18
(
3
), pp.
325
341
.10.1002/nla.727
17.
Bidani
,
M.
,
Randhy
,
N. E.
, and
Bensassi
,
B.
,
2002
, “
Optimal Control of Disscrete-Time Singularly Perturbed Systems
,”
Int. J. Control
,
75
(
13
), pp.
955
966
.10.1080/00207170210156152
18.
Kim
,
B.-S.
,
Kim
,
Y.-J.
, and
Lim
,
M.-T.
,
2004
, “
LQG Control for Nonstandard Singularly Perturbed Discrete-Time Systems
,”
ASME J. Dyn. Syst. Meas. Control
,
126
(
4
), pp.
860
864
.10.1115/1.1850537
19.
Litkouhi
,
B.
, and
Khalil
,
H.
,
1985
, “
Multirate and Composite Control of Two-Time-Scale Discrete-Time Systems
,”
IEEE Trans. Autom. Control
,
30
(
7
), pp.
645
651
.10.1109/TAC.1985.1104024
20.
Naidu
,
D. S.
, and
Rao
,
A. K.
,
1985
,
Singular Perturbation Analysis of Discrete Control Systems
,
Springer-Verlag
,
New York
.
21.
Medanic
,
J.
,
1982
, “
Geometric Properties and Invariant Manifolds of the Riccati Equation
,”
IEEE Trans. Autom. Control
,
27
(
3
), pp.
670
677
.10.1109/TAC.1982.1102989
22.
Gajic
,
Z.
, and
Lim
,
M.-T.
,
2001
,
Optimal Control of Singularly Perturbed Linear Systems and Applications
,
Marcel-Dekker
,
New York
, p.
98
.
You do not currently have access to this content.