In this paper, we focus on a novel nonlinear modeling and dynamic analysis of the actuated butterfly valves coupled in series. The actuated valves used in the chilled water systems of the U.S. Navy and commercial ships, namely, “smart valves,” recently have received much attention when many of them are operating in a complex network. The network regulates the pressure of the pipeline, while several nonlinear torques/forces including the hydrodynamic and bearing torques and the magnetomotive force affect the performance of each set individually and subsequently the whole system via the couplings among the valves. The contribution of this work is to model such couplings in the presence of the nonlinearities and an applied periodic noise and then carry out dynamic analysis of the valves. We examine the model developed with/without actuation by applying a periodic noise on the upstream valve to capture the couplings among the parameters of both the actuators and valves. This would help us predict the behavior of a particular valve in the network subject to motions of other valves.

References

References
1.
Naseradinmousavi
,
P.
, and
Nataraj
,
C.
,
2011
, “
Nonlinear Mathematical Modeling of Butterfly Valves Driven by Solenoid Actuators
,”
J. Appl. Math. Modell.
,
35
(
5
), pp.
2324
2335
.10.1016/j.apm.2010.11.036
2.
Naseradinmousavi
,
P.
, and
Nataraj
,
C.
,
2012
, “
Transient Chaos and Crisis Phenomena in Butterfly Valves Driven by Solenoid Actuators
,”
Commun. Nonlinear Sci. Numer. Simul.
,
17
(
11
), pp.
4336
4345
.10.1016/j.cnsns.2012.01.034
3.
Naseradinmousavi
,
P.
, and
Nataraj
,
C.
,
2013
, “
Optimal Design of Solenoid Actuators Driving Butterfly Valves
,”
ASME J. Mech. Des.
,
135
(
9
), p.
094501
.10.1115/1.4024720
4.
Kwuimy
,
C. A. K.
, and
Nataraj
,
C.
,
2012
, “
Modeling and Dynamic Analysis of a Magnetically Actuated Butterfly Valve
,”
Nonlinear Dyn.
,
70
(
1
), pp.
435
451
.10.1007/s11071-012-0466-3
5.
Seman
,
A.
,
2007
, “
Adaptive Automation for Machinery Control
,” ONR Presentation.
6.
Hughes
,
R.
,
Balestrini
,
S.
,
Kelly
,
K.
,
Weston
,
N.
, and
Mavris
,
D.
,
2006
, “
Modeling of an Integrated Reconfigurable Intelligent System (IRIS) for Ship Design
,”
Proceedings of the ASNE Ship and Ship Systems Technology (S3T) Symposium
.
7.
Automation
,
F.
,
2011
, DDG-51 Class Chilled Water Automation Systems (CWAS) Land-Based Performance Test (LBPT) Facility Control and Monitoring System (CMS).
8.
Schweitzer
,
G.
,
Bleuler
,
H.
, and
Traxler
,
A. H.
,
1994
,
Active Magnetic Bearing, Basics, Properties and Applications of Active Magnetics Bearings
,
Verlag der Facvereine (vdf)
.
9.
Preumont
,
A.
,
2006
,
Mechatronics: Dynamics of Electromechanical and Piezoelectric Systems
,
Springer
, New York.
10.
Heisler
,
I. A.
,
Braun
,
T.
,
Zhang
,
Y.
,
Hu
,
G.
, and
Cerdeirax
,
H. A.
,
2003
, “
Experimental Investigation of Partial Synchronization in Coupled Chaotic Oscillators
,”
Chaos
,
13
(
1
), pp.
185
195
.10.1063/1.1505811
11.
Ge
,
Z. M.
, and
Lin
,
T. N.
,
2003
, “
Chaos, Chaos Control and Synchronization of Electro-Mechanical Gyrostat System
,”
J. Sound Vib.
,
259
(
3
), pp.
585
603
.10.1006/jsvi.2002.5110
12.
Siewe
,
M. S.
,
Yamgoue
,
S. B.
,
Kakmen
,
F. M. M.
, and
Tchawoua
,
C.
,
2010
, “
Chaos Controlling Self-Sustained Electromechanical Seismograph System Based on the Melnikov Theory
,”
Nonlinear Dyn.
,
62
, pp.
379
389
.10.1007/s11071-010-9725-3
13.
Ho
,
J. H.
,
Nguyen
,
V. D.
, and
Woo
,
K. C.
,
2011
, “
Nonlinear Dynamics of a New Electro-Vibro-Impact System
,”
Nonlinear Dyn.
,
63
, pp.
35
49
.10.1007/s11071-010-9783-6
14.
Brauer
,
J. R.
,
2006
, Magnetic Actuators and Sensors,
Wiley
, Hoboken, NJ.10.1002/0471777714
15.
Sarpkaya
,
T.
,
1959
, “
Oblique Impact of a Bounded Stream on a Plane Lamina
,”
J. Franklin Inst.
,
267
(
3
), pp.
229
242
.10.1016/0016-0032(59)90136-X
16.
Sarpkaya
,
T.
,
1961
, “
Torque and Cavitation Characteristics of Butterfly Valves
,”
ASME J. Appl. Mech.
,
28
(
4
), pp.
511
518
.10.1115/1.3641776
17.
Park
,
J. Y.
, and
Chung
,
M. K.
,
2006
, “
Study on Hydrodynamic Torque of a Butterfly Valve
,”
ASME J. Fluids Eng.
,
128
(
1
), pp.
190
195
.10.1115/1.2137348
18.
Wikipedia
,
2014
, Hagen–Poiseuille Equation—Wikipedia, The Free Encyclopedia, accessed June 24,
2014
.
19.
Association
,
A. W. W.
,
2012
,
Butterfly Valves: Torque, Head Loss, and Cavitation Analysis
,
2nd ed.
, American Water Works Association, Denver, CO.
20.
Leutwyler
,
Z.
, and
Dalton
,
C.
,
2008
, “
A CFD Study of the Flow Field, Resultant Force, and Aerodynamic Torque on a Symmetric Disk Butterfly Valve in a Compressible Fluid
,”
ASME J. Pressure Vessel Technol.
,
130
(
2
), p.
021302
.10.1115/1.2891929
You do not currently have access to this content.