In this paper, a new finite-time stability (FTS) concept, which is defined as positive FTS (PFTS), is introduced into discrete-time linear systems. Differently from previous FTS-related papers, the initial state as well as the state trajectory is required to be in the non-negative orthant of the Euclidean space. Some test criteria are established for the PFTS of the unforced system. Then, a sufficient condition is proposed for the design of a state feedback controller such that the closed-loop system is positively finite-time stable. This condition is provided in terms of a series of linear matrix inequalities (LMIs) with some equality constraints. Moreover, the requirement of non-negativity of the controller is considered. Finally, two examples are presented to illustrate the developed theory.

References

References
1.
Dorato
,
P.
,
1961
, “
Short Time Stability in Linear Time-Varying Systems
,”
Proceedings of the IRE International Convention Record Part 4
,
New York
, March 21–25, pp.
83
87
.
2.
Weiss
,
L.
, and
Infante
,
E.
,
1967
, “
Finite Time Stability Under Perturbing Forces and on Product Spaces
,”
IEEE Trans. Autom. Control
,
12
(
1
), pp.
54
59
.10.1109/TAC.1967.1098483
3.
Amato
,
F.
,
Ariola
,
M.
, and
Dorato
,
P.
,
2001
, “
Finite-Time Control of Linear Systems Subject to Parametric Uncertainties and Disturbances
,”
Automatica
,
37
(
9
), pp.
1459
1463
.10.1016/S0005-1098(01)00087-5
4.
Amato
,
F.
, and
Ariola
,
M.
,
2005
, “
Finite-Time Control of Discrete-Time Linear Systems
,”
IEEE Trans. Autom. Control
,
50
(
5
), pp.
724
729
.10.1109/TAC.2005.847042
5.
Garcia
,
G.
,
Tarbouriech
,
S.
, and
Bernussou
,
J.
,
2009
, “
Finite-Time Stabilization of Linear Time-Varying Continuous Systems
,”
IEEE Trans. Autom. Control
,
54
(
2
), pp.
364
369
.10.1109/TAC.2008.2008325
6.
Amato
,
F.
,
Ariola
,
M.
, and
Cosentino
,
C.
,
2010
, “
Finite-Time Control of Discrete-Time Linear Systems: Analysis and Design Conditions
,”
Automatica
,
46
(
5
), pp.
919
924
.10.1016/j.automatica.2010.02.008
7.
Amato
,
F.
,
Ambrosino
,
R.
,
Ariola
,
M.
,
Cosentino
,
C.
, and
Tommasi
,
G. D.
,
2014
,
Finite-Time Stability and Control
,
Springer
,
London, UK
.
8.
Luan
,
X.
,
Liu
,
F.
, and
Shi
,
P.
,
2010
, “
Robust Finite-Time H∞ Control for Nonlinear Jump Systems Via Neural Networks
,”
Circuits Syst. Signal Process.
,
29
(
3
), pp.
481
498
.10.1007/s00034-010-9158-8
9.
Xu
,
J.
,
Sun
,
J.
, and
Yue
,
D.
,
2012
, “
Stochastic Finite-Time Stability of Nonlinear Markovian Switching Systems With Impulsive Effects
,”
ASME J. Dyn. Syst. Meas. Control
,
134
(
1
), p.
011011
.10.1115/1.4005359
10.
He
,
S.
, and
Liu
,
F.
,
2010
, “
Stochastic Finite-Time Stabilization for Uncertain Jump Systems Via State Feedback
,”
ASME J. Dyn. Syst. Meas. Control
,
132
(
3
), p.
034504
.10.1115/1.4001278
11.
Zuo
,
Z.
,
Liu
,
Y.
,
Wang
,
Y.
, and
Li
,
H.
,
2012
, “
Finite-Time Stochastic Stability and Stabilisation of Linear Discrete-Time Markovian Jump Systems With Partly Unknown Transition Probabilities
,”
IET Control Theory Appl.
,
6
(
10
), pp.
1522
1526
.10.1049/iet-cta.2011.0335
12.
Xu
,
J.
, and
Sun
,
J.
,
2010
, “
Finite-Time Stability of Linear Time-Varying Singular Impulsive Systems
,”
IET Control Theory Appl.
,
4
(
10
), pp.
2239
2244
.10.1049/iet-cta.2010.0242
13.
Zhang
,
Y.
,
Liu
,
C.
, and
Mu
,
X.
,
2012
, “
Robust Finite-Time Stabilization of Uncertain Singular Markovian Jump Systems
,”
Appl. Math. Modell.
,
36
(
10
), pp.
5109
5121
.10.1016/j.apm.2011.12.052
14.
Xue
,
W.
, and
Mao
,
W.
,
2013
, “
Admissible Finite-Time Stability and Stabilization of Uncertain Discrete Singular Systems
,”
ASME J. Dyn. Syst. Meas. Control
,
135
(
3
), p.
031018
.10.1115/1.4023213
15.
Stojanović
,
S. B.
,
Debeljković
,
D. L.
, and
Dimitrijević
,
N.
,
2012
, “
Finite-Time Stability of Discrete-Time Systems with Time-Varying Delay
,”
Chem. Ind. Chem. Eng. Q.
,
18
(
4
), pp.
525
533
.10.2298/CICEQ120126026S
16.
Zuo
,
Z.
,
Li
,
H.
, and
Wang
,
Y.
,
2013
. “
New Criterion for Finite-Time Stability of Linear Discrete-Time Systems with Time-Varying Delay
,”
J. Franklin Inst.
,
350
(
9
), pp.
2745
2756
.10.1016/j.jfranklin.2013.06.017
17.
Lazarević
,
M. P.
, and
Spasić
,
A. M.
,
2009
, “
Finite-Time Stability Analysis of Fractional Order Time-Delay Systems: Gronwall's Approach
,”
Math. Comput. Modell.
,
49
(
3–4
), pp.
475
481
.10.1016/j.mcm.2008.09.011
18.
Xiang
,
Z.
,
Sun
,
Y.
, and
Mahmoud
,
M. S.
,
2012
, “
Robust Finite-Time H∞ Control for a Class of Uncertain Switched Neutral Systems
,”
Commun. Nonlinear Sci. Numer. Simul.
,
17
(
4
), pp.
1766
1778
.10.1016/j.cnsns.2011.09.022
19.
Wang
,
Y.
,
Shi
,
X.
,
Zuo
,
Z.
,
Chen
,
M. Z. Q.
, and
Shao
,
Y.
,
2013
, “
On Finite-Time Stability for Nonlinear Impulsive Switched Systems
,”
Nonlinear Anal.: Real World Appl.
,
14
(
1
), pp.
807
814
.10.1016/j.nonrwa.2012.08.003
20.
Lin
,
X.
,
Du
,
H.
,
Li
,
S.
, and
Zou
,
Y.
,
2013
, “
Finite-Time Stability and Finite-Time Weighted L2-Gain Analysis for Switched Systems with Time-Varying Delay
,”
IET Control Theory Appl.
,
7
(
7
), pp.
1058
1069
.10.1049/iet-cta.2012.0551
21.
Caswell
,
H.
,
2001
,
Matrix Population Models: Construction, Analysis, and Interpretation
,
Sinauer Associates
,
Sunderland, MA
.
22.
Farina
,
L.
, and
Rinaldi
,
S.
,
2000
,
Positive Linear Systems: Theory and Applications
,
Wiley
,
New York
.
23.
Kaczorek
,
T.
,
2002
,
Positive 1D and 2D Systems
,
Springer
,
London, UK
.
24.
Gao
,
H.
,
Lam
,
J.
,
Wang
,
C.
, and
Xu
,
S.
,
2005
, “
Control for Stability and Positivity: Equivalent Conditions and Computation
,”
IEEE Trans. Circuits Syst. II
,
52
(
9
), pp.
540
544
.10.1109/TCSII.2005.850525
25.
Rami
,
M. A.
, and
Tadeo
,
F.
,
2007
, “
Controller Synthesis for Positive Linear Systems with Bounded Controls
,”
IEEE Trans. Circuits Syst. II
,
54
(
2
), pp.
151
155
.10.1109/TCSII.2006.886888
26.
Liu
,
X.
,
2009
, “
Constrained Control of Positive Systems with Delays
,”
IEEE Trans. Autom. Control
,
54
(
7
), pp.
1596
1600
.10.1109/TAC.2009.2017961
27.
Zhao
,
X.
,
Zhang
,
L.
,
Shi
,
P.
, and
Liu
,
M.
,
2012
, “
Stability of Switched Positive Linear Systems with Average Dwell Time Switching
,”
Automatica
,
48
(
6
), pp.
1132
1137
.10.1016/j.automatica.2012.03.008
28.
Chen
,
G.
, and
Yang
,
Y.
,
2014
, “
Finite-Time Stability of Switched Positive Linear Systems
,”
Int. J. Robust Nonlinear Control
,
24
(
1
), pp.
179
190
.10.1002/rnc.2870
29.
Gahinet
,
P.
,
Nemirovski
,
A.
,
Laub
,
A. J.
, and
Chilali
,
M.
,
1995
,
LMI Control Toolbox
,
The MathWorks, Inc.
,
Natick, MA
.
30.
El Ghaoui
,
L.
,
Oustry
,
F.
, and
AitRami
,
M.
,
1997
, “
A Cone Complementarity Linearization Algorithm for Static Output-Feedback and Related Problems
,”
IEEE Trans. Autom. Control
,
42
(
8
), pp.
1171
1176
.10.1109/9.618250
31.
Young
,
S. L.
,
Young
,
S. M.
,
Wook
,
H. K.
, and
Kwan
,
H. L.
,
2001
, “
Delay-Dependent Robust H∞ Control for Uncertain Systems With Time-Varying State-Delay
,”
Proceedings of the 40th IEEE Conference on Decision and Control
,
Orlando, FL
, Dec. 4–7, pp.
3208
3213
.
32.
Zhang
,
L.
,
Huang
,
B.
, and
Lam
,
J.
,
2003
, “
H∞ Model Reduction of Markovian Jump Linear Systems
,”
Syst. Control Lett.
,
50
(
2
), pp.
103
118
.10.1016/S0167-6911(03)00133-6
33.
Jørgensen
,
N. L.
,
1976
, “
A Stability Analysis of a Dynamic Leontief Model of Exponential Growth in Consumption
,”
Scandinavian J. Econ.
,
78
(
4
), pp.
561
570
.10.2307/3439526
34.
Luenberger
,
D. G.
, and
Arbel
,
A.
,
1977
, “
Singular Dynamic Leontief Systems
,”
Econometrica
,
45
(
4
), pp.
991
995
.10.2307/1912686
35.
Jódar
,
L.
, and
Merello
,
P.
,
2010
, “
Positive Solutions of Discrete Dynamic Leontief Input–Output Model with Possibly Singular Capital Matrix
,”
Math. Comput. Modell.
,
52
(
7–8
), pp.
1081
1087
.10.1016/j.mcm.2010.02.043
You do not currently have access to this content.