Piezo-electric actuators (PEAs) have been widely used in nanopositioning applications due to their high stiffness, fast responses, and large actuating forces. However, the existence of nonlinearities such as hysteresis can greatly deteriorate their performance and, as such, modeling and control of PEAs for improved performance has drawn considerable attention in the literature. This paper presents a brief survey of recent achievements in modeling and control of PEAs as well as the relevant issues that remain to be resolved. Specifically, various methods for modeling hysteresis, creep, and vibration dynamics in PEAs are examined, followed by a discussion of the issues leading to modeling errors. Recently reported PEA control schemes are surveyed along with their advantages and disadvantages. The challenges associated with control problems are also discussed.

References

References
1.
Ouyang
,
P. R.
,
Tjiptoprodjo
,
R. C.
,
Zhang
,
W. J.
, and
Yang
,
G. S.
,
2008
, “
Micro-Motion Devices Technology: The State of Arts Review
,”
Int. J. Adv. Manuf. Technol.
,
38
(
5–6
), pp.
463
478
.10.1007/s00170-007-1109-6
2.
Devasia
,
S.
, and
Moheimani
,
S. O. R.
,
2007
, “
A Survey of Control Issues in Nano-Positioning
,”
IEEE Trans. Control Syst. Technol.
,
15
(
5
), pp.
802
823
.10.1109/TCST.2007.903345
3.
Chapman
,
D.
,
Thomlinson
,
W.
,
Johnston
,
R. E.
, and
Washburn
,
D.
,
1997
, “
Diffraction Enhanced X-Ray Imaging
,”
Phys. Med. Biol.
,
42
(
11
), pp.
2015
2025
.10.1088/0031-9155/42/11/001
4.
Cao
,
Y.
,
Chen
,
X. B.
, and
May
,
T.
,
2013
, “
Sliding Mode Control on the Active Optics for the Far Infrared Beamline
,”
Proceedings of 24th Canadian Congress of Applied Mechanics
, (CANCAM), No. CS04,
Saskatoon, SK, Canada
, June 2–6.
5.
Sebastian
,
A.
, and
Salapaka
,
S. M.
,
2005
, “
Design Methodologies for Robust Nano-Positioning
,”
IEEE Trans. Control Syst. Technol.
,
13
(
6
), pp.
868
876
.10.1109/TCST.2005.854336
6.
Ishitobi
,
M.
,
Nishi
,
M.
, and
Miyachi
,
M.
,
2003
, “
A Survey of Recent Innovations in Vibration Damping and Control Using Shunted Piezoelectric Transducers
,”
IEEE Trans. Control Syst. Technol.
,
11
(
4
), pp.
482
494
.10.1109/TCST.2003.813371
7.
Corft
,
D.
,
Shed
,
G.
, and
Devasia
,
S.
,
2001
, “
Creep, Hysteresis, and Vibration Compensation for Piezoactuators: Atomic Force Microscopy Application
,”
ASME J. Dyn. Syst.
,
123
(
1
), pp.
35
43
.10.1115/1.1341197
8.
Leang
,
K. K.
, and
Devasia
,
S.
,
2007
, “
Feedback-Linearized Inverse Feedforward for Creep, Hysteresis, and Vibration Compensation in AFM Piezoactuators
,”
IEEE Trans. Control Syst. Technol.
,
15
(
5
), pp.
927
935
.10.1109/TCST.2007.902956
9.
Schitter
,
G.
,
Menold
,
P.
, and
Knapp
,
H. F.
,
2001
, “
High Performance Feedback for Fast Scanning Atomic Force Microscopes
,”
Rev. Sci. Instrum.
72
(
8
), pp.
3320
3327
.10.1063/1.1387253
10.
Tien
,
S. C.
,
Zou
,
Q. Z.
, and
Devasia
,
S.
,
2005
, “
Iterative Control of Dynamics-Coupling-Caused Errors in Piezoscanners During High-Speed AFM Operation
,”
IEEE Trans. Control Syst. Technol.
,
13
(
6
), pp.
921
931
.10.1109/TCST.2005.854334
11.
Leang
,
K. K.
, and
Devasia
,
S.
,
2002
, “Creep and Vibration Compensation for Piezo-actuators: Feedback and Feedforward Control,” Proc. 2nd IFAC Conference on Mechatronic System, Berkeley, CA, Dec. 9–11, pp. 283–289.
12.
Visintin
,
A.
,
1994
,
Differential Models of Hysteresis
,
Springer-Verlag
,
Berlin Heidelberg
.
13.
Bashash
,
S.
, and
Jalili
,
N.
,
2007
, “
Intelligence Rules of Hysteresis in the Feedforward Trajectory Control of Piezoelectrically-Driven Nanostagers
,”
J. Micromech. Microeng.
,
17
(
2
), pp.
342
349
.10.1088/0960-1317/17/2/021
14.
Tian
,
Y.
,
Shirinzadeh
,
B.
, and
Zhang
,
D.
,
2010
, “
Design and Dynamics of a Three-DOF Flexure-Based Parallel Mechanism for Micro/Nano Manipulation
,”
Microelectron. Eng.
,
87
(2)
, pp.
230
241
.10.1016/j.mee.2009.08.001
15.
Yong
,
Y. K.
,
Aphale
,
S. S.
, and
Moheimani
,
S. O. R.
,
2009
, “
Design, Identification and Control of a Flexure-Based Stage for Fast Nanoscale Positioning
,”
IEEE Trans. Nanotechnol.
,
8
(
1
), pp.
46
54
.10.1109/TNANO.2008.2005829
16.
Kim
,
H. S.
, and
Cho
,
Y. M.
,
2009
, “
Design and Modeling of a Novel Three-DOF Precision Micro-Stage
,”
Mechatronics
,
19
(
5
), pp.
598
608
.10.1016/j.mechatronics.2009.01.004
17.
Gao
,
P.
, and
Swei
,
S. M.
,
1999
, “
A Six-Degree-of-Freedom Micro-Manipulator Based on Piezoelectric Actuator
,”
Nanotechnology
,
10
(4)
, pp.
447
452
.10.1088/0957-4484/10/4/315
18.
Hui
,
C.
,
2001
, “
Dynamics and Control of Parallel Manipulators With Redundant Actuation
,” M.Sc. thesis, Electrical and Electronic Engineering at the Hong Kong University of Science and Technology, Hong Kong, China.
19.
Kock
,
S.
, and
Schumacher
,
W.
,
1998
, “
A Parallel X-Y Manipulator With Actuation Redundancy for High-Speed and Active-Stiffness Applications
,”
Proceedings of IEEE International Conference on Robotics and Automation
,
Leuven, Belgium
, May 20, Vol. 3, pp. 2295–2300.
20.
Kim
,
J. W.
,
Park
,
F. C.
,
Ryu
,
S. J.
,
Kim
,
J.
,
Hwang
,
J. C.
,
Park
,
C.
, and
Iurascu
,
C. C.
,
2001
, “
Design and Analysis of a Redundantly Actuated Parallel Mechanism for Rapid Machining
,”
IEEE Trans. Robot. Autom.
,
17
(
4
), pp.
423
434
.10.1109/70.954755
21.
Kurtz
,
R.
, and
Hayward
,
V.
,
1992
, “
Multiple-Goal Kinematic Optimization of a Parallel Spherical Mechanical With Actuator Redundancy
,”
IEEE Trans. Robot. Autom.
,
8
(
5
), pp.
644
651
.10.1109/70.163788
22.
Walker
,
I. D.
, and
Marcus
,
S. I.
,
1988
, “
Subtask Performance by Redundancy Resolution for Redundant Robot Manipulators
,”
IEEE Trans. Robot. Autom.
,
4
(
3
), pp.
350
354
.10.1109/56.795
23.
Du
,
X.
,
Dixon
,
R.
,
Goodall
,
R. M.
, and
Zolotas
,
A. C.
,
2010
, “
Modeling and Control of a High Redundancy Actuator
,”
Mechatronics
,
20
(
1
), pp.
102
112
.10.1016/j.mechatronics.2009.09.009
24.
Jung
,
H.
,
Shim
,
J. Y.
, and
Gweon
,
D.
,
2000
, “
New Open-Loop Actuating Method of Piezoelectric Actuators for Removing Hysteresis and Creep
,”
Rev. Sci. Instrum.
,
71
(
9
), pp.
3436
3440
.10.1063/1.1287627
25.
Jung
,
H.
, and
Gweon
,
D.
,
2000
, “
Creep Characteristics of Piezoelectric Actuators
,”
Rev. Sci. Instrum.
,
71
(
4
), pp.
1896
1900
.10.1063/1.1150559
26.
Zhong
,
J. H.
,
2003
, “
Modeling and Control Piezoceramic Actuator for Nanopositioning
,” M.Sc. thesis, Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC.
27.
Mrad
,
R. B.
, and
Hu
,
H.
,
2001
, “
Dynamic Modeling of Hysteresis in Piezoceramics
,”
Proceedings of IEEE/ASME International Conference on Advanced Intelligent Mechatronics
,
Como, Italy
, July 8–12, Vol. 1, pp. 510–515.
28.
Telba
,
A.
, and
Ali
,
W. G.
,
2011
, “
Hysteresis Modeling in a Piezoelectric Nanopositioner Stage
,”
Proceedings of the World Congress on Engineering
, London, UK, July 6–8, Vol. 2, pp. 1493–1495.
29.
Henze
,
O.
, and
Rucker
,
W. M.
,
2002
, “
Identification Procedures of Preisach Model
,”
IEEE Trans. Magn.
,
38
(
2
), pp.
833
836
.10.1109/20.996215
30.
Mayergoyz
,
I. D.
,
1986
, “
Mathematical Models of Hysteresis
,”
Phys. Rev. Lett.
,
56
(
15
), pp.
603
608
.10.1103/PhysRevLett.56.1518
31.
Lee
,
S. H.
,
Royston
,
T. J.
, and
Friedman
,
G.
,
2000
, “
Modeling and Compensation of Hysteresis in Piezoceramic Transducers for Vibration Control
,”
J. Intell. Mater. Syst. Struct.
,
11
(
10
), pp.
781
790
.10.1106/GQLJ-JGEU-MHG1-7JDF
32.
Lee
,
S. H.
, and
Royston
,
T. J.
,
2000
, “
Modeling Piezoceramic Transducer Hysteresis in the Structural Vibration Control Problem
,”
J. Acoust. Soc. Am.
,
108
(
6
), pp.
2843
2855
.10.1121/1.1323464
33.
Hu
,
H.
, and
Mrad
,
R. B.
,
2003
, “
On the Classical Preisach Model for Hysteresis in Piezoceramic Actuators
,”
Mechatronics
,
13
(
2
), pp.
85
94
.10.1016/S0957-4158(01)00043-5
34.
Kuhnen
,
K.
, and
Janocha
,
H.
,
2001
, “
Inverse Feedforward Controller for Complex Hysteretic Nonlinearities in Smart-Material Systems
,”
Control Intell. Syst.
,
29
(
3
), pp.
74
83
, Available at http://www.lpa.uni-saarland.de/pdf/mic01art.pdf
35.
Qin
,
Y. D.
,
Tian
,
Y. L.
,
Zhang
,
D. W.
,
Shirinzadeh
,
B.
, and
Fatikow
,
S.
,
2013
, “
A Novel Direct Inverse Modeling Approach for Hysteresis Compensation of Piezoelectric Actuator in Feedforward Applications
,”
IEEE/ASME Trans. Mechatron.
,
18
(
3
), pp.
981
989
.10.1109/TMECH.2012.2194301
36.
Janaideh
,
M. A.
,
Rakheja
,
S.
, and
Su
,
C. Y.
,
2011
, “
An Analytical Generalized Prandtl-Ishlinskii Model Inversion for Hysteresis Compensation in Micropositioning Control
,”
IEEE/ASME Trans. Mechatron.
,
16
(
4
), pp.
734
744
.10.1109/TMECH.2010.2052366
37.
Jiang
,
H.
,
Ji
,
H. L.
,
Qiu
,
J. H.
, and
Chen
,
Y. S.
,
2010
, “
A Modified Prandtl-Ishlinskii Model for Modeling Asymmetric Hysteresis of Piezoelectric Actuators
,”
IEEE Trans. Ultrason., Ferroelectr. Freq. Control
,
57
(
5
), pp.
1200
1210
.10.1109/TUFFC.2010.1533
38.
Gu
,
G. Y.
,
Yang
,
M. J.
, and
Zhu
,
L. M.
,
2012
, “
Real-Time Inverse Hysteresis Compensation of Piezoelectric Actuators With a Modified Prandtl-Ishlinskii Model
,”
Rev. Sci. Instrum.
,
83
(
6
), pp.
198
209
.10.1063/1.4728575
39.
Oh
,
J. H.
, and
Bernstein
,
D. S.
,
2005
, “
Semilinear Duhem Model for Rate-Independent and Rate-Dependent Hysteresis
,”
IEEE Trans. Autom. Control
,
50
(
5
), pp.
631
645
.10.1109/TAC.2005.847035
40.
Oh
,
J. H.
, and
Padthe
,
A. K.
,
2005
, “
Duhem Models for Hysteresis in Sliding and Presliding Friction
,”
Proceedings of 44th IEEE Conference on Decision and Control, and the European Control Conference
,
Seville, Spain
, Dec. 12–15, pp. 8132–8137.
41.
Padthe
,
A. K.
, and
Bernstein
,
D. S.
,
2007
, “
A Delay Duhem Model for Jump Resonance Hysteresis
,”
Proceedings of 46th IEEE Conference on Decision and Control
,
New Orleans, LA
, Dec. 12–14, pp 1609–1614.
42.
Ikhouane
,
F.
,
Manosa
,
V.
, and
Rodellar
,
J.
,
2007
, “
Dynamic Properties of the Hysteretic Bouc-Wen Model
,”
Syst. Control Lett.
,
56
(
3
), pp.
197
205
.10.1016/j.sysconle.2006.09.001
43.
Bellmunt
,
O. G.
,
Ikhouane
,
F.
, and
Miracle
,
D. M.
,
2008
, “
Control of Bouc-Wen Hysteretic Systems: Application to a Piezoelectric Actuator
,”
Proceedings of the 13th IEEE on International Power Electronics and Motion Control Conference
, Poznan, Poland, Sep. 1–3, pp.
1670
1675
.
44.
Song
,
J.
, and
Kiureghian
,
A.
,
2006
, “
Generalized Bouc-Wen Model for Highly Asymmetric Hysteresis
,”
J. Eng. Mech.
,
132
(
6
), pp.
610
618
.10.1061/(ASCE)0733-9399(2006)132:6(610)
45.
Bellmunt
,
O. G.
,
Ikhouane
,
F.
,
Vilanova
,
P. C.
, and
Jane
,
J. B.
,
2007
, “
Modeling and Validation of a Piezoelectric Actuator
,”
Electric. Eng.
,
89
(
8
), pp.
629
638
.10.1007/s00202-006-0049-8
46.
Lin
,
C. J.
, and
Yang
,
S. R.
,
2005
, “
Modeling of a Piezo-Actuated Positioning Stage Based on a Hysteresis Observer
,”
Asian J. Control
,
7
(
1
), pp.
73
80
.10.1111/j.1934-6093.2005.tb00230.x
47.
Rakotondrabe
,
M.
,
2011
, “
Bouc-Wen Modeling and Inverse Multiplicative Structure to Compensate Hysteresis Nonlinearity in Piezoelectric Actuators
,”
IEEE Trans. Autom., Sci. Eng.
,
8
(
2
), pp.
428
431
.10.1109/TASE.2010.2081979
48.
Adriaens
,
H. J. M. T. A.
,
Koning
,
W. L.
, and
Banning
,
R.
,
2000
, “
Modeling Piezoelectric Actuators
,”
IEEE/ASME Trans. Mechatron.
,
5
(
4
), pp.
331
341
.10.1109/3516.891044
49.
Banning
,
R.
, and
Koning
,
W. L.
,
2001
, “
State-Space Analysis and Identification for a Class of Hysteresis System
,”
Automatica
,
37
, pp.
1883
1892
.10.1016/S0005-1098(01)00157-1
50.
Clayton
,
G. M.
,
Tien
,
S.
, and
Fleming
,
A. J.
,
2008
, “
Inverse-Feedforward of Charge-Controlled Piezopositioners
,”
Mechatronics,
18
(
5–6
), pp.
273
281
.10.1016/j.mechatronics.2007.07.006
51.
Cao
,
Y.
, and
Chen
,
X. B.
,
2012
, “
A Novel Discrete ARMA-based Model for Piezoelectric Actuator Hysteresis
,”
IEEE/ASME Trans. Mechatron.
,
17
(
4
), pp.
737
744
.10.1109/TMECH.2011.2128339
52.
Chen
,
X. B.
,
Zhang
,
Q. S.
,
Kang
,
D.
, and
Zhang
,
W. J.
,
2008
, “
On the Dynamics of Piezoelectric Positioning Systems
,”
Rev. Sci. Instrum.
,
79
(
11
), p.
116101
.10.1063/1.2982238
53.
Salapaka
,
S.
,
Sebastian
,
A.
,
Cleveland
,
J. P.
, and
Salapaka
,
M. V.
,
2002
, “
High Bandwidth Nano-Positioner: A Robust Control Approach
,”
Rev. Sci. Instrum.
,
73
(
9
), pp.
3232
3241
.10.1063/1.1499533
54.
Bhikkaji
,
B.
,
Ratnam
,
M.
,
Fleming
,
A. J.
, and
Moheimani
,
S. O. R.
,
2007
, “
High-Performance Control of Piezoelectric Tube Scanners
,”
IEEE Trans. Control Syst. Technol.
,
15
(
5
), pp.
853
866
.10.1109/TCST.2007.902947
55.
Clayton
,
G. M.
,
Tien
,
S.
, and
Fleming
,
A. J.
,
2006
, “
Hysteresis and Vibration Compensation in Piezoelectric Actuators by Integrating Charge Control and Inverse Feedforward
,”
Proceedings of 4th IFAC Symposium on Mechatronic Systems
,
Heidelberg, Germany
, September 12–14, Vol. 4, pp. 812–818.
56.
Schitter
,
G.
, and
Stemmer
,
A.
,
2004
, “
Identification and Open-Loop Tracking Control of a Piezoelectric Tube Scanner for High-Speed Scanning-Probe Microscopy
,”
IEEE Trans. Control Syst. Technol.
,
12
(
3
), pp.
449
454
.10.1109/TCST.2004.824290
57.
Croft
,
D.
, and
Devasia
,
S.
,
1999
, “
Vibration Compensation for High Speed Scanning Tunnelling Microscopy
,”
Rev. Sci. Instrum.
,
70
(
12
), pp.
4600
4605
.10.1063/1.1150119
58.
Deng
,
L.
, and
Tan
,
Y. H.
,
2009
, “
Modeling Hysteresis in Piezoelectric Actuators Using NARMAX Models
,”
Sens. Actuators, A
,
149
(
1
), pp.
106
112
.10.1016/j.sna.2008.09.022
59.
Song
,
D.
, and
Li
,
C. J.
,
1999
, “
Modeling of Piezo Actuator's Nonlinear and Frequency Dependent Dynamics
,”
Mechatronics
,
9
(
4
), pp.
391
410
.10.1016/S0957-4158(99)00005-7
60.
Xiao
,
S. L.
, and
Li
,
Y. M.
,
2013
, “
Modeling and High Dynamic Compensating the Rate-Dependent Hysteresis of Piezoelectric Actuators Via a Novel Modified Inverse Preisach Model
,”
IEEE Trans. Control Syst. Technol.
,
21
(
5
), pp.
1549
1557
.10.1109/TCST.2012.2206029
61.
Zhang
,
X. L.
, and
Tan
,
Y. H.
,
2010
, “
A Hybrid Model for Rate-Dependent Hysteresis in Piezoelectric Actuators
,”
Sens. Actuators, A
,
157
(
1
), pp.
54
60
.10.1016/j.sna.2009.10.009
62.
Li
,
P. Z.
,
Yan
,
F.
,
Ge
,
C.
,
Wang
,
X. L.
,
Xu
,
L. S.
,
Guo
,
J. L.
, and
Li
,
P. Y.
,
2013
, “
A Simple Fuzzy System for Modeling of Both Rate-Independent and Rate-Dependent Hysteresis in Piezoelectric Actuators
,”
Mech. Syst. Signal Process.
,
36
(
1
), pp.
182
192
.10.1016/j.ymssp.2012.10.004
63.
Xu
,
Q. S.
,
2013
, “
Identification and Compensation of Piezoelectric Hysteresis Without Modeling Hysteresis Inverse
,”
IEEE Trans. Ind. Electron.
,
60
(
9
), pp.
3927
3937
.10.1109/TIE.2012.2206339
64.
Lien
,
J. P.
,
York
,
A.
,
Fang
,
T. G.
, and
Buckner
,
G. D.
,
2010
, “
Modeling Piezoelectric Actuators With Hysteretic Recurrent Neural Networks
,”
Sens. Actuators, A
,
163
, pp.
516
525
.10.1016/j.sna.2010.08.013
65.
Zhang
,
X. L.
,
Tan
,
Y. H.
, and
Su
,
M. Y.
,
2009
, “
Modeling of Hysteresis in Piezoelectric Actuators Using Neural Networks
,”
Mech. Syst. Signal Process.
,
23
(
8
), pp.
2699
2711
.10.1016/j.ymssp.2009.05.002
66.
Dang
,
X. J.
, and
Tan
,
Y. H.
,
2005
, “
An Inner Product-Based Dynamic Neural Network Hysteresis Model for Piezoceramic Actuators
,”
Sens. Actuators, A
,
121
(
2
), pp.
535
542
.10.1016/j.sna.2005.04.003
67.
Tong
,
Z.
,
Tan
,
Y. H.
, and
Zeng
,
X. W.
,
2005
, “
Modeling Hysteresis Using Hybrid Method of Continuous Transformation and Neural Networks
,”
Sens. Actuators, A
,
119
(
1
), pp.
254
262
.10.1016/j.sna.2004.09.019
68.
Chiena
,
C. J.
,
Lee
,
F. S.
, and
Wang
,
J. C.
,
2007
, “
Enhanced Iterative Learning Control for a Piezoelectric Actuator System Using Wavelet Transform Filtering
,”
J. Sound Vib.
,
299
(
3
), pp.
605
620
.10.1016/j.jsv.2006.07.021
69.
Lin
,
E.
,
2009
, “
Generalized Wavelet Formulation of Hysteresis Models for Smart Material Systems
,”
Hysteresis Modeling and Micromagnetics
,
NIST
,
Gaithersburg, MD
.
70.
Yu
,
Y. H.
,
Xiao
,
Z. C.
,
Lin
,
E. B.
, and
Naganathan
,
N.
,
2000
, “
Analytic and Experimental Studies of a Wavelet Identification of Preisach Model of Hysteresis
,”
J. Magn. Magn. Mater.
,
208
(
3
), pp.
255
263
.10.1016/S0304-8853(99)00590-9
71.
Gu
,
G. Y.
, and
Zhu
,
L. M.
,
2011
, “
Modeling of Rate-Dependent Hysteresis in Piezoelectric Actuators Using a Family of Ellipses
,”
Sens. Actuators, A
,
165
(
2
), pp.
303
309
.10.1016/j.sna.2010.09.020
72.
Zhang
,
Y. L.
,
Han
,
M. L.
,
Yu
,
M. Y.
,
Shee
,
C. Y.
, and
Ang
,
W. T.
,
2012
, “
Automatic Hysteresis Modeling of Piezoelectric Micromanipulator in Vision-Guided Micromanipulation Systems
,”
IEEE/ASME Trans. Mechatron.
,
17
(
3
), pp.
547
553
.10.1109/TMECH.2011.2106136
73.
Fett
,
T.
, and
Thun
,
G.
,
1998
, “
Determination of Room-Temperature Tensile Creep of PZT
,”
J. Mater. Sci. Lett.
,
17
(
22
), pp.
1929
1931
.10.1023/A:1006608509876
74.
Ge
,
P.
, and
Jouaneh
,
M.
,
1996
, “
Tracking Control of a Piezoceramic Actuator
,”
IEEE Trans. Control Syst. Technol.
,
4
(
3
), pp.
209
216
.10.1109/87.491195
75.
Leang
,
K. K.
, and
Devasia
,
S.
,
2006
, “
Design of Hysteresis Compensating Iterative Control for Piezo-Positioners: Application on Atomic Force Microscopes
,”
Mechatronics,
16
(
3–4
), pp.
141
158
.10.1016/j.mechatronics.2005.11.006
76.
Lin
,
C. J.
, and
Yang
,
S. R.
,
2006
, “
Precise Positioning of Piezo-Actuated Stages Using Hysteresis-Observer Based Control
,”
Mechatronics
,
16
(
7
), pp.
417
426
.10.1016/j.mechatronics.2006.03.005
77.
Lin
,
C. Y.
, and
Chen
,
P. Y.
,
2011
, “
Precision Tracking Control of a Biaxial Piezo Stage Using Repetitive Control and Double-Feedforward Compensation
,”
Mechatronics
,
21
(
1
), pp.
239
249
.10.1016/j.mechatronics.2010.11.002
78.
Wang
,
F. C.
,
Tsai
,
Y. C.
,
Hsieh
,
C. H.
,
Chen
,
L. S.
, and
Yu
,
C. H.
,
2011
, “
Robust Control of a Two-Axis Piezoelectric Nano-Positioning Stage
,”
Preprints of the 18th IFAC World Congress
,
Milano, Italy
, Aug. 28–Sep. 2, Vol. 18, 3539–3544.
79.
Fung
,
R. F.
, and
Lin
,
W. C.
,
2010
, “
System Identification and Contour Tracking of a Plane-Type 3-DOF (X, Y, θz) Precision Positioning Table
,”
IEEE Trans. Control Syst. Technol.
,
18
(
1
), pp.
22
34
.10.1109/TCST.2008.2009528
80.
Cao
,
Y.
, and
Chen
,
X. B.
,
2010
, “
System Identification of a Three-DOF Nano-Positioning Stage by Hankel Matrix
,”
Actuators
,
2
, pp.
1
18
.10.3390/act2010001
81.
Chen
,
T. W.
, and
Francis
,
B.
,
1995
,
Optimal Sampled-Data Control Systems
,
Springer-Verlag Berlin
,
Heidelberg, Germany
.
82.
Vörös
,
J.
,
2009
, “
Modeling and Identification of Hysteresis Using Special Forms of the Coleman-Hodgdon Model
,” J. Electr. Eng.,
60
(
2
), pp.
100
105
. Available at: http://iris.elf.stuba.sk/JEEEC/data/pdf/2_109-06.pdf
83.
Cao
,
Y.
,
Cheng
,
L.
,
Chen
,
X. B.
, and
Peng
,
J. Y.
,
2013
, “
An Inversion-Based Model Predictive Control With an Integral-of-Error State Variable for Piezoelectric Actuators
,”
IEEE/ASME Trans. Mechatron.
,
18
(
3
), pp.
895
904
.10.1109/TMECH.2012.2194792
84.
Comstock
,
R. H.
, and
Acton
,
W.
,
1981
, “
Charge Control of Piezoelectric Actuators to Reduce the Hysteresis Effects
,” U.S. Patent No. US4263527.
85.
Fleming
,
A. J.
, and
Moheimani
,
S. O. R.
,
2005
, “
A Grounded-Load Charge Amplifier for Reducing Hysteresis in Piezoelectric Tube Scanners
,”
Rev. Sci. Instrum.
,
76
, p.
073707
.10.1063/1.1938952
86.
Fleming
,
A. J.
, and
Moheimani
,
S. O. R.
,
2004
, “
Improved Current and Charge Amplifiers for Driving Piezoelectric Loads, and Issues in Signal Processing Design for Synthesis of Shunt Damping Circuits
,”
J. Intell. Mater. Syst. Struct.
,
15
(
2
), pp.
77
92
.10.1177/1045389X04039701
87.
Tsai
,
M. S.
, and
Chen
,
J. S.
,
2003
, “
Robust Tracking Control of a Piezoactuator Using a New Approximate Hysteresis Model
,”
ASME J. Dyn. Syst. Meas. Control
,
125
(
1
), pp.
96
102
.10.1115/1.1540114
88.
Cruz-Hernández
,
J. M.
, and
Hayward
,
V.
,
2001
, “
Phase Control Approach to Hysteresis Reduction
,”
IEEE Trans. Control Syst. Technol.
,
9
(
1
), pp.
17
26
.10.1109/87.896742
89.
Gu
,
G. Y.
,
Zhu
,
L. M.
,
Su
,
C. Y.
, and
Ding
,
H.
,
2013
, “
Motion Control of Piezoelectric Positioning Stages: Modeling, Controller Design and Experimental Evaluation
,”
IEEE/ASME Trans. Mechatron.
,
18
(
5
), pp.
1459
1471
.10.1109/TMECH.2012.2203315
90.
Tan
,
X. B.
, and
Baras
,
J. S.
,
2005
, “
Adaptive Identification and Control of Hysteresis in Smart Materials
,”
IEEE Trans. Autom. Control
,
50
(
6
), pp.
827
839
.10.1109/TAC.2005.849215
91.
Tao
,
G.
, and
Kokotović
,
P. V.
,
1995
, “
Adaptive Control of Plants With Unknown Hysteresis
,”
IEEE Trans. Autom. Control
,
40
(
2
), pp.
200
212
.10.1109/9.341778
92.
Wu
,
Y.
, and
Zou
,
Q. Z.
,
2007
, “
Iterative Control Approach to Compensate for Both the Hysteresis and the Dynamics Effects of Piezo Actuators
,”
IEEE Trans. Control Syst. Technol.
,
15
(
5
), pp.
936
944
.10.1109/TCST.2007.899722
93.
Ahn
,
H. S.
,
Chen
,
Y. Q.
, and
Moore
,
K. L.
,
2007
, “
Iterative Learning Control: Brief Survey and Categorization
,”
IEEE Trans. Syst., Man, Cybern
,
37
(
6
), pp.
1099
1121
.10.1109/TSMCC.2007.905759
94.
Ghosh
,
J.
, and
Paden
,
B.
,
2001
, “
Iterative Learning Control for Nonlinear Nonminimum Phase Plants
,”
ASME J. Dyn. Syst
,
123
(1), pp.
21
30
.10.1115/1.1341200
95.
Bristow
,
D. A.
,
Tharayil
,
M.
, and
Alleyne
,
A. G.
,
2006
, “
A Survey of Iterative Learning Control
,”
IEEE Control Syst.
,
26
(
3
), pp.
96
114
.10.1109/MCS.2006.1636313
96.
Kim
,
K. S.
, and
Zou
,
Q. Z.
,
2013
, “
A Modeling-Free Inversion-Based Iterative Feedforward Control for Precision Output Tracking of Linear Time-Invariant Systems
,”
IEEE/ASME Trans. Mechatron.
,
18
(
6
), pp.
1767
1777
.10.1109/TMECH.2012.2212912
97.
Xu
,
J. X.
,
Huang
,
D. Q.
,
Venkataramanan
,
V.
, and
Huynh
,
T. C. T.
,
2013
, “
Extreme Precision Motion Tracking of Piezoelectric Positioning Stage Using Sampled-Data Iterative Learning Control
,”
IEEE Trans. Control Syst. Technol.
,
21
(
4
), pp.
1432
1439
.10.1109/TCST.2012.2201718
98.
Huang
,
D. Q.
,
Xu
,
J. X.
,
Venkataramanan
,
V.
, and
Huynh
,
T. C. T.
,
2014
, “
High-Performance Tracking of Piezoelectric Positioning Stage Using Current-Cycle Iterative Learning Control With Gain Scheduling
,”
IEEE Trans. Ind. Electron.
,
61
(
2
), pp.
1085
1098
.10.1109/TIE.2013.2253071
99.
Jain
,
S.
, and
Swarup
,
A.
,
2013
, “
Identification and Iterative Learning Control of Piezoelectric Actuator Based Nanopositioning System
,”
Proceedings of 2nd International Conference on Emerging Trends in Engineering and Management
,
Rohtak, India
, July 20–21, Vol. 3, pp. 88–93.
100.
Ryoo
,
J. R.
,
Doh
,
T. Y.
, and
Chung
,
M. J.
,
2004
, “
Robust Disturbance Observer for the Track-Following Control System of an Optical Disk Drive
,”
Control Eng. Pract.
,
12
(
5
), pp.
577
585
.10.1016/S0967-0661(03)00140-0
101.
Choi
,
Y. J.
,
Yang
,
K. J.
,
Chung
,
W. K.
,
Kim
,
H. R.
, and
Suh
,
H.
,
2003
, “
On the Robustness and Performance of Disturbance Observers for Second-Order Systems
,”
IEEE Trans. Autom. Control
,
48
(
2
), pp.
315
320
.10.1109/TAC.2002.808491
102.
Yi
,
J. G.
,
Chang
,
S.
, and
Shen
,
Y. T.
,
2009
, “
Disturbance Observer Based Hysteresis Compensation for Piezoelectric Actuators
,”
IEEE/ASME Trans. Mechatron.
,
14
(
4
), pp.
456
464
.10.1109/TMECH.2009.2023986
103.
Tesfaye
,
A.
,
Lee
,
H. S.
, and
Tomizuka
,
M.
,
2000
, “
A Sensitivity Optimization Approach to Design of a Disturbance Observer in Digital Motion Control Systems
,”
IEEE/ASME Trans. Mechatron.
,
5
(
1
), pp.
32
38
.10.1109/3516.828587
104.
Cao
,
Y.
, and
Chen
,
X. B.
,
2014
, “
Two Modified Discrete PID-Based Sliding Mode Control for Piezoelectric Actuators
,”
Int. J. Control
,
87
(
1
), pp.
9
20
.10.1080/00207179.2013.819125
105.
Liawa
,
H. C.
,
Shirinzadeh
,
B.
, and
Smith
,
J.
,
2007
, “
Enhanced Sliding Mode Motion Tracking Control of Piezoelectric Actuators
,”
Sens. Actuators, A
,
138
(
1
), pp.
194
202
.10.1016/j.sna.2007.04.062
106.
Woronko
,
A.
,
Huang
,
J.
, and
Altintas
,
Y.
,
2003
, “
Piezoelectric Tool Actuator for Precision Machining on Conventional CNC Turning Centers
,”
Precis. Eng.
,
27
(
4
), pp.
335
345
.10.1016/S0141-6359(03)00040-0
107.
Hwang
,
C. L.
, and
Jan
,
C.
,
2005
, “
State Estimator Based Feedback Control for a Class of Piezoelectric Systems With Hysteresis Nonlinearity
,”
IEEE Trans. Syst., Man, Cybern
,
35
(
5
), pp.
654
664
.10.1109/TSMCA.2005.851120
108.
Khan
,
S.
,
Elitas
,
M.
,
Kunt
,
E. D.
, and
Sabanovic
,
A.
,
2006
, “
Discrete Sliding Model Control of Piezo Actuator in Nano-Scale Range
,”
IEEE International Conference on Industrial Technology
,
Mumbai, India
, Dec. 15–17, pp. 1454–1459.
109.
Xue
,
X.
, and
Tang
,
J.
,
2006
, “
Robust and High Precision Control Using Piezoelectric Actuator Circuit and Integral Continuous Sliding Mode Control Design
,”
J. Sound Vib.
,
293
(
1–2
), pp.
335
359
.10.1016/j.jsv.2005.10.009
110.
Abidi
,
K.
,
Sabanovic
,
A.
, and
Yesilyurt
,
S.
,
2004
, “
Sliding Mode Control Based Disturbance Compensation and External Force Estimation for a piezoelectric actuator
,”
8th IEEE International Workshop on Advanced Motion Control
,
Kawasaki, Janpan
, March 25–28, pp. 529–534.
111.
Yu
,
S. H.
,
Shirinzadeh
,
B.
,
Alici
,
G.
, and
Smith
,
J.
,
2005
, “
Sliding Mode Control of a Piezoelectric Actuator With Neural Network Compensation Rate-Dependent Hysteresis
,”
Proceedings of IEEE International Conference on Robotics and Automation
,
Barcelona, Spain
, April 18–22, pp. 3641–3645.
112.
Wang
,
S.
,
Habibi
,
S.
, and
Burton
,
R.
,
2008
, “
Sliding Mode Control for an Electrohydraulic Actuator System With Discontinuous Nonlinear Friction
,”
Proc. Inst. Mech. Eng., Part I
,
222
(
8
), pp.
799
815
.10.1243/09596518JSCE637
113.
Edwards
,
C.
, and
Spurgeon
,
S. K.
,
1998
,
Sliding Mode Control-Theory and Applications
,
Taylor & Francis, Ltd
., London, UK.
114.
Wang
,
S.
,
Burton
,
R.
, and
Habibi
,
S.
,
2009
, “
Filtering Controller in Sliding Mode: From the Estimation to Control
,”
Proc. Inst. Mech. Eng., Part I
,
223
(
6
), pp.
833
846
.10.1243/09596518JSCE738
115.
Young
,
K. D.
,
Utkin
,
V. I.
, and
Özgüner
,
Ü.
,
1999
, “
A Control Engineer's Guide to Sliding Mode Control
,”
IEEE Trans. Control Syst. Technol.
,
7
(
3
), pp.
328
342
.10.1109/87.761053
116.
Levant
,
A.
,
2005
, “
Homogeneity Approach to High-Order Sliding Mode Design
,”
Automatica
,
41
(
5
), pp.
823
830
.10.1016/j.automatica.2004.11.029
117.
Rhif
,
A.
,
2012
, “
A High Order Sliding Mode Control With PID Sliding Surface: Simulation on a Torpedo
,”
Int J. Inf. Tech., Control Autom.
,
2
(
1
), pp. 1–13.
118.
Fridman
,
L.
, and
Levant
,
A.
,
2002
, “
Higher Order Sliding Modes
,”
Sliding Mode Control in Engineering
,
W.
Perruquetti
, and
J. P.
Barbot
, eds.,
Marcel Dekker
,
New York
, pp.
53
101
.
119.
Peng
,
J. Y.
, and
Chen
,
X. B.
,
2014
, “
Integrated PID-Based Sliding Mode State Estimation and Control for Piezoelectric Actuators
,”
IEEE/ASME Trans. Mechatron.
,
19
(
1
), pp.
88
99
.10.1109/TMECH.2012.2222428
120.
Rafee
,
N.
,
Chen
,
T. W.
, and
Malik
,
O. P.
,
1997
, “
A Technique for Optimal Digital Redesign of Analog Controllers
,”
IEEE Trans. Control Syst. Technol.
,
5
(
1
), pp.
89
99
.10.1109/87.553667
121.
Gao
,
W. B.
,
Wang
,
Y. F.
, and
Homaifa
,
A.
,
1995
, “
Discrete-Time Variable Structure Control Systems
,”
IEEE Trans. Ind. Electron.
,
42
(
2
), pp.
117
122
.10.1109/41.370376
122.
Monsees
,
G.
,
2002
, “
Discrete-Time Sliding Mode Control
,” Ph.D. thesis, Delft University of Technology, Delft, Netherlands, p.
182
.
123.
Bartoszewicz
,
A.
,
1998
, “
Discrete-Time Quasi-Sliding Mode Control Strategies
,”
IEEE Trans. Ind. Electron.
,
45
(
4
), pp.
633
637
.10.1109/41.704892
124.
Daafouz
,
J.
,
Riedinger
,
P.
, and
Iung
,
C.
,
2002
, “
Stability Analysis and Control Synthesis for Switched System: A Switched Lyapunov Function Approach
,”
IEEE Trans. Autom. Control
,
47
(
11
), pp.
1883
1887
.10.1109/TAC.2002.804474
125.
Fleming
,
A. J.
,
Aphale
,
S. S.
, and
Moheimani
,
S. O. R.
,
2010
, “
A New Method for Robust Damping and Tracking Control of Scanning Probe Microscope Positioning Stages
,”
IEEE Trans. Nanotechnol.
,
9
(
4
), pp.
438
448
.10.1109/TNANO.2009.2032418
126.
Wadikhaye
,
S. P.
,
Yong
,
Y. K.
,
Bhikkaji
,
B.
, and
Moheimani
,
S. O. R.
,
2014
, “
Control of a Piezoelectrically Actuated High-Speed Serial-Kinematic AFM nanopositioner
,”
Smart Mater. Struct.
,
23
(
2
), p.
025030
.10.1088/0964-1726/23/2/025030
127.
Shen
,
J. C.
,
Jywe
,
W. Y.
, and
Wu
,
C. H.
,
2014
, “
Control of an Equipment for Fabricating Periodic Nanostructure
,”
Precis. Eng.
,
38
(
2
), pp.
391
397
.10.1016/j.precisioneng.2013.12.005
128.
Liang
,
W. Y.
,
Huang
,
S. N.
,
Chen
,
S. L.
, and
Tan
,
K. K.
,
2013
, “
Precision Motion Control of a Linear Piezoelectric Ultrasonic Motor Stage
,”
IEEE/ASME International Conference on Advanced Intelligent Mechatronics
,
Wollongong, Australia
, Jul 9–12, pp.164–169.10.1109/AIM.2013.6584086
129.
Fleming
,
A. J.
,
2010
, “
Nanopositioning System With Force Feedback for High-Performance Tracking and Vibration Control
,”
IEEE/ASME Trans. Mechatron.
,
15
(
3
), pp.
433
447
.10.1109/TMECH.2009.2028422
130.
Syahputra
,
H. P.
,
Ko
,
T. J.
, and
Chung
,
B. M.
,
2014
, “
Development of 2-Axis Hybrid Positioning System for Precision Contouring on Micro–Milling Operation
,”
J. Mech. Sci. Technol.
,
28
(
2
), pp.
691
697
.10.1007/s12206-013-1132-5
131.
Xie
,
Y. Q.
,
Tan
,
Y. H.
, and
Dong
,
R. L.
,
2013
, “
Nonlinear Modeling and Decoupling Control of XY Micropositioning Stages With Piezoelectric Actuators
,”
IEEE/ASME Trans. Mechatron.
,
18
(
3
), pp.
821
832
.10.1109/TMECH.2012.2187794
132.
Nise
,
N. S.
,
2011
,
Control System Engineering
,
6th ed.
,
Wiley
, Hoboken, NJ.
133.
Bentayeb
,
A.
,
Maamri
,
N.
, and
Trigeassou
,
J. C.
,
2006
, “
Design of PID Controller for Delayed MIMO Plants Using Moments Based Approach
,” J. Electr. Eng.,
57
(
6
), pp.
318
328
. Available at: http://iris.elf.stuba.sk/JEEEC/data/pdf/6_106-02.pdf
134.
Morgan
,
B. S.
,
1964
, “
The Synthesis of Linear Multivariable Systems by State Variable Feedback
,”
IEEE Trans. Autom. Control
,
9
(
4
), pp.
404
411
.10.1109/TAC.1964.1105733
135.
Wang
,
W. H.
,
Hou
,
Z. S.
, and
Jin
,
S. T.
,
2009
, “
Model-Free Indirect Adaptive Decoupling Control for Nonlinear Discrete Time MIMO Systems
,”
Joint 48th IEEE Conference on Decision and Control and 28th Chinese Control Conference
,
Shanghai, China
, Dec. 15–18, pp. 7663–7668.
136.
Amin
,
M. H.
, and
Moness
,
M.
,
1988
, “
Design of Precompensators via Infinite-Zero Structure for Dynamic Decoupling of Linear Invertible Systems
,”
Int. J. Control
,
47
(
4
), pp.
993
1009
.10.1080/00207178808906072
137.
Moness
,
M.
, and
Amin
,
M. H.
,
1988
, “
Minimal-Order Precompensators for Decoupling Linear Multivariable Systems S (A, B, C, E)
,”
Int. J. Control
,
47
(
6
), pp.
1925
1936
.10.1080/00207178808906147
138.
Lin
,
C. A.
, and
Wu
,
C. M.
,
1999
, “
Block Decoupling Control of Linear Multivariable Systems
,”
Asian J. Control
,
1
(
3
), pp.
146
152
.10.1111/j.1934-6093.1999.tb00015.x
139.
Astrom
,
K. J.
,
Johansson
,
K. H.
, and
Wang
,
Q. G.
,
2001
, “
Design of Decoupled PID Controllers for MIMO Systems
,”
Proceedings of the American Control Conference
,
Arlington, VA
, pp.
2015
2020
.
140.
Wang
,
Z. H.
,
Tan
,
J.
,
Zou
,
Q. Z.
, and
Jiang
,
W.
,
2013
, “
Control-Based High-Speed Direct Mask Fabrication for Lighography via Mechanical Plowing
,”
American Control Conference
,
Washington, DC
, June 17–19, pp. 5183–5188.
141.
Cao
,
Y.
, and
Chen
,
X. B.
,
2013
, “
An Output Tracking Based Discrete PID-Sliding Mode Control on MIMO Systems
,”
IEEE/ASME Trans. Mechatron.
,
19
(
4
), pp.
1183
1194
.10.1109/TMECH.2013.2275743
142.
Cao
,
Y.
, and
Chen
,
X. B.
,
2013
, “
Disturbance Observer Based Sliding Mode Control for a Three-DOF Nanopositioning Stage
,”
IEEE/ASME Trans. Mechatron.
,
19
(
3
), pp.
924
931
.10.1109/TMECH.2013.2262802
143.
Härkegård
,
O.
,
2004
, “
Resolving Actuator Redundancy-Control Allocation vs. Linear Quadratic Control
,” Report No. LiTH-ISY-R-2593, ECC’ 03, Cambridge, UK.
144.
Härkegård
,
O.
, and
Glad
,
S. T.
,
2005
, “
Resolving Actuator Redundancy-Optimal Control vs. Control Allocation
,”
Automatica
,
41
(
1
), pp.
137
144
.10.1016/j.automatica.2004.09.007
145.
Brinkerhoff
,
R.
, and
Devasia
,
S.
,
1999
, “
Output Tracking for Actuator Deficient/Redundant Systems: Multiple Piezoactuator Example
,”
J. Guid.
,
23
(
2
), pp.
370
373
.10.2514/2.4535
146.
Liberzon
,
D.
, and
Morse
,
A. S.
,
1999
, “
Basic Problems in Stability and Design of Switched Systems
,”
IEEE Control Syst.
,
19
(
5
), pp.
59
70
.10.1109/37.793443
147.
Branicky
,
M. S.
,
1994
, “
Stability of Switched and Hybrid Systems
,”
Proceedings of 33rd Conference on Decision and Control
,
Lake Buena Vista, FL
, Dec. 14–16, pp. 3498–3503.
148.
Ishii
,
H.
, and
Francis
,
B. A.
,
2001
, “
Stabilizing a Linear System by Switching Control With Dwell Time
,”
Proceedings of American Control Conference
,
Arlington, VA
, June 25–27, Vol. 3, pp. 1876–1881.
149.
Lin
,
H.
, and
Antsaklis
,
P. J.
,
2009
, “
Stability and Stabilizability of Switched Linear Systems: A Survey of Recent Results
,”
IEEE Trans. Autom. Control
,
54
(
2
), pp.
308
322
.10.1109/TAC.2008.2012009
150.
Shang
,
W. W.
,
Cong
,
S.
, and
Jiang
,
S. L.
,
2009
, “
Coordination Control of Parallel Manipulators With Actuation Redundancy
,”
Joint 48th IEEE Conference on Decision and Control and 28th Chinese Control Conference
,
Shanghai, China
, Dec. 15–18, pp. 8186–8191.
151.
Garrido
,
R.
, and
Torres-Cruz
,
D.
,
2004
, “
On PD Control of Parallel Robots With Redundant Actuation
,”
1st International Conference on Electrical and Electronics Engineering
, June 24–27, pp. 356–360.
152.
Braun
,
D. J.
,
Petit
,
F.
,
Huber
,
F.
,
Haddadin
,
S.
,
Smagt
,
P.
,
Schäffer
,
A. A.
, and
Vijayakumar
,
S.
,
2013
, “
Robots Driven by Compliant Actuators: Optimal Control Under Actuation Constraints
,”
IEEE Trans. Robot.
,
29
(
5
), pp.
1085
1101
.10.1109/TRO.2013.2271099
153.
Zaccarian
,
L.
,
2007
, “
On Dynamic Control Allocation for Input-Redundant Control Systems
,”
Proceedings of 46th IEEE Conference on Decision and Control
,
New Orleans, LA
, Dec. 12–14, pp. 1192–1197.
154.
Fossen
,
T. I.
,
2006
, “
A Survey of Control Allocation Methods for Ships and Underwater Vehicles
,”
14th Mediterranean Conference on Control and Automation
,
Ancona, Italy
, June 28–30, pp. 1–6.
155.
Johansen
,
T. A.
, and
Fossen
,
T. I.
,
2013
, “
Control Allocation—A Survey
,”
Automatica
,
49
(
5
), pp.
1087
1103
.10.1016/j.automatica.2013.01.035
156.
Ruben
,
S. D.
,
2010
, “
Modeling, Control, and Real-Time Optimization for a Nano-Precision System
,” Ph.D. thesis, University of California, Los Angeles, CA.
157.
Zheng
,
J. C.
, and
Fu
,
M. Y.
,
2012
, “
A Switching Controller for Piezoelectric Microactuators in Dual-Stage Actuator Hard Disk Drives
,”
IEEE/ASME International Conference on Advanced Intelligent Mechatronics
,
Kaohsiung, Taiwan
, July 8–11, pp. 946–951.
158.
Zheng
,
J. C.
, and
Fu
,
M. Y.
,
2012
, “
A Unified Dual-Stage Actuator Control Scheme for Track Seeking and Following in Hard Disk Drives
,”
IET Control Theory Appl.
,
6
(
10
), pp.
1468
1477
.10.1049/iet-cta.2010.0117
You do not currently have access to this content.