Because an electric scooter driven by permanent magnet synchronous motor (PMSM) servo system has the unknown nonlinearity and the time-varying characteristics, its accurate dynamic model is difficult to establish for the design of the linear controller in whole system. In order to conquer this difficulty and raise robustness, a novel adaptive recurrent Legendre neural network (NN) control system, which has fast convergence and provide high accuracy, is proposed to control for PMSM servo-drive electric scooter under external torque disturbance in this study. The novel adaptive recurrent Legendre NN control system consists of a recurrent Legendre NN control with adaptation law and a remunerated control with estimation law. In addition, the online parameter tuning methodology of the recurrent Legendre NN control and the estimation law of the remunerated control can be derived by using the Lyapunov stability theorem. Finally, comparative studies are demonstrated by experimental results in order to show the effectiveness of the proposed control scheme.

References

References
1.
Novotny
,
D. W.
, and
Lipo
,
T. A.
,
1996
,
Vector Control and Dynamics of AC Drives
,
Oxford University Press
,
New York
.
2.
Leonhard
,
W.
,
2001
,
Control of Electrical Drives
, 3rd ed.,
Springer Verlag
,
Berlin, Germany
.
3.
Lin
,
F. J.
,
1997
, “
Real-Time IP Position Controller Design With Torque Feedforward Control for PM Synchronous Motor
,”
IEEE Trans. Ind. Electron.
,
44
(
3
), pp.
398
407
.10.1109/41.585839
4.
Haykin
,
S.
,
1994
,
Neural Networks
,
Maxwell Macmillan
,
Ottawa, ON
, Canada.
5.
Sastry
,
P. S.
,
Santharam
,
G.
, and
Unnikrishnan
,
K. P.
,
1994
, “
Memory Neural Networks for Identification and Control of Dynamical Systems
,”
IEEE Trans. Neural Networks
,
5
(
2
), pp.
306
319
.10.1109/72.279193
6.
Grino
,
R.
,
Cembrano
,
G.
, and
Torras
,
C.
,
2000
, “
Nonlinear System Identification Using Additive Dynamic Neural Networks–Two On-Line Approaches
,”
IEEE Trans. Circuits Syst. I
,
47
(
2
), pp.
150
165
.10.1109/81.828569
7.
Seo
,
J.
,
Khajepour
,
A.
, and
Huissoon
,
J. P.
,
2011
, “
Identification of Die Thermal Dynamics Using Neural Networks
,”
ASME J. Dyn. Syst., Meas., Control
,
133
(6), p.
061008
.10.1115/1.4004045
8.
Carneiro
,
J. F.
,
and Almeida
, F. G. de,
2012
, “
A Neural Network Based Nonlinear Model of a Servopneumatic System
,”
ASME J. Dyn. Syst., Meas., Control
,
134
(2), p.
024502
.10.1115/1.4005360
9.
Pao
,
Y. H.
,
1989
,
Adaptive Pattern Recognition and Neural Networks
,
Addison-Wesley
,
Boston
, MA.
10.
Pao
,
Y. H.
, and
Philips
,
S. M.
,
1995
, “
The Functional Link Net and Learning Optimal Control
,”
Neurocomputing
,
9
(
2
), pp.
149
164
.10.1016/0925-2312(95)00066-F
11.
Patra
,
J. C.
,
Pal
,
R. N.
,
Chatterji
,
B. N.
, and
Panda
,
G.
,
1999
, “
Identification of Nonlinear Dynamic Systems Using Functional Link Artificial Neural Networks
,”
IEEE Trans. Syst., Man, Cybern., B
,
29
(
2
), pp.
254
262
.10.1109/3477.752797
12.
Dehuri
,
S.
, and
Cho
,
S. B.
,
2010
, “
A Comprehensive Survey on Functional Link Neural Networks and an Adaptive PSOBP Learning for CFLNN
,”
Neural Comput. Appl.
,
19
(
2
), pp
187
205
.10.1007/s00521-009-0288-5
13.
Yang
,
S. S.
, and
Tseng
,
C. S.
,
1996
, “
An Orthogonal Neural Network for Function Approximation
,”
IEEE Trans. Syst., Man, Cybern., B
,
26
(
5
), pp.
779
785
.10.1109/3477.537319
14.
Patra
,
J. C.
,
Chin
,
W. C.
,
Meher
,
P. K.
, and
Chakraborty
,
G.
,
2008
, “
Legendre-FLANN-Based Nonlinear Channel Equalization in Wireless Communication Systems
,”
IEEE International Conference on Systems
,
Man, Cybernetics
(
SMC 2008
), Singapore, October 12–15, pp.
1826
1831
.10.1109/ICSMC.2008.4811554
15.
Patra
,
J. C.
,
Meher
,
P. K.
, and
Chakraborty
,
G.
,
2009
, “
Nonlinear Channel Equalization for Wireless Communication Systems Using Legendre Neural Networks
,”
Signal Process.
,
89
(
11
), pp.
2251
2262
.10.1016/j.sigpro.2009.05.004
16.
Patra
,
J. C.
, and
Bornand
,
C.
,
2010
, “
Nonlinear Dynamic System Identification Using Legendre Neural Network
,”
International Joint Conference on Neural Networks
(
IJCNN
),
Barcelona, Spain
, July 18–23.10.1109/IJCNN.2010.5596904
17.
Liu
,
F.
, and
Wang
,
J.
,
2012
, “
Fluctuation Prediction of Stock Market Index by Legendre Neural Network With Random Time Strength Function
,”
Neurocomputing
,
83
, pp.
12
21
.10.1016/j.neucom.2011.09.033
18.
Das
,
K. K.
, and
Satapathy
,
J. K.
,
2012
, “
Novel Algorithms Based on Legendre Neural Network for Nonlinear Active Noise Control With Nonlinear Secondary Path
,”
Int. J. Comput. Sci. Inf. Technol.
,
3
(
5
), pp.
5036
5039
.
19.
Madyastha
,
R. K.
, and
Aazhang
,
B.
,
1994
, “
An Algorithm for Training Multilayer Perceptrons for Data Classification and Function Interpolation
,”
IEEE Trans. Circuits Syst. I
,
41
(
12
), pp.
866
875
.10.1109/81.340848
20.
Chow
,
T. W. S.
, and
Fang
,
Y.
,
1998
, “
A Recurrent Neural-Network-Based Real-Time Learning Control Strategy Applying to Nonlinear Systems With Unknown Dynamics
,”
IEEE Trans. Ind. Electron.
,
45
(
1
), pp.
151
161
.10.1109/41.661316
21.
Brdys
,
M. A.
, and
Kulawski
,
G. J.
,
1999
, “
Dynamic Neural Controllers for Induction Motor
,”
IEEE Trans. Neural Networks
,
10
(
2
), pp.
340
355
.10.1109/72.750564
22.
Li
,
X. D.
,
Ho
,
J. K. L.
, and
Chow
,
T. W. S.
,
2005
, “
Approximation of Dynamical Time-Variant Systems by Continuous-Time Recurrent Neural Networks
,”
IEEE Trans. Circuits Syst. II
,
52
(
10
), pp.
656
660
.10.1109/TCSII.2005.852006
23.
Lu
,
C. H.
, and
Tsai
,
C. C.
,
2008
, “
Adaptive Predictive Control With Recurrent Neural Network for Industrial Processes: An Application to Temperature Control of a Variable-Frequency Oil-Cooling Machine
,”
IEEE Trans. Ind. Electron.
,
55
(
3
), pp.
1366
1375
.10.1109/TIE.2007.896492
24.
Maio
,
Z.
, and
Wang
,
Y.
,
2013
, “
Robust Dynamic Surface Control of Flexible Joint Robots Using Recurrent Neural Networks
,”
J. Control Theory Appl.
,
11
(
2
), pp.
222
229
.10.1007/s11768-013-1240-x
25.
Ortega
,
R.
, and
Spong
,
M. W.
,
1989
, “
Adaptive Motion Control of Rigid Robots: A Tutorial
,”
Automatica
,
25
(
6
), pp.
877
888
.10.1016/0005-1098(89)90054-X
26.
Chien
,
M. C.
, and
Huang
,
A. C.
,
2007
, “
Adaptive Control for Flexible-Joint Electrically Driven Robot With Time-Varying Uncertainties
,”
IEEE Trans. Ind. Electron.
,
54
(
2
), pp.
1032
1038
.10.1109/TIE.2007.893054
27.
Hou
,
Z. G.
,
Zou
,
A. M.
,
Cheng
,
L.
, and
Tan
,
M.
,
2009
, “
Adaptive Control of an Electrically Driven Nonholonomic Mobile Robot Via Backstepping and Fuzzy Approach
,”
IEEE Trans. Control Syst. Technol.
,
17
(
4
), pp.
803
815
.10.1109/TCST.2009.2012516
28.
de Sousa
,
C.
, Jr.
,
Hemerly
,
E. M.
, and
Galvao
,
R. K. H.
,
2002
, “
Adaptive Control for Mobile Robot Using Wavelet Networks
,”
IEEE Trans. Syst., Man, Cybern., B
,
32
(
4
), pp.
493
504
.10.1109/TSMCB.2002.1018768
29.
Huang
,
S. N.
,
Tan
,
K. K.
, and
Lee
,
T. H.
,
2008
, “
Adaptive Neural Network Algorithm for Control Design of Rigid-Link Electrically Driven Robots
,”
Neurocomputing
,
71
(
4
), pp.
885
894
.10.1016/j.neucom.2007.02.012
30.
Yoo
,
S. J.
,
Park
,
J. B.
, and
Choi
,
Y. H.
,
2008
, “
Adaptive Output Feedback Control of Flexible-Joint Robots Using Neural Networks: Dynamic Surface Design Approach
,”
IEEE Trans. Neural Networks
,
19
(
10
), pp.
1712
1726
.10.1109/TNN.2008.2001266
31.
Cheng
,
L.
,
Hou
,
Z. G.
, and
Tan
,
M.
,
2009
, “
Adaptive Neural Network Tracking Control for Manipulators With Uncertain Kinematics, Dynamics, and Actuator Model
,”
Automatica
,
45
(
10
), pp.
2312
2318
.10.1016/j.automatica.2009.06.007
32.
Farmanbordar
,
A.
, and
Hoseini
,
S. M.
,
2013
, “
Neural Network Adaptive Output Feedback Control of Flexible Link Manipulators
,”
ASME J. Dyn. Syst., Meas., Control
,
135
(2), p.
021009
.10.1115/1.4007701
33.
Lin
,
C. H.
, and
Lin
,
C. P.
,
2012
, “
The Hybrid RFNN Control for a PMSM Drive System Using Rotor Flux Estimator
,”
Int. J. Power Electron.
,
4
(
1
), pp.
33
48
.10.1504/IJPELEC.2012.044150
34.
Lin
,
C. H.
,
Chiang
,
P. H.
,
Tseng
,
C. S.
,
Lin
,
Y. L.
, and
Lee
,
M. Y.
,
2010
, “
Hybrid Recurrent Fuzzy Neural Network Control for Permanent Magnet Synchronous Motor Applied in Electric Scooter
,”
6th International Power Electronics Conference
(
IPEC
),
Sapporo, Japan
, June 21–24, pp.
1371
1376
.10.1109/IPEC.2010.5544586
35.
Slotine
,
J. J. E.
, and
Li
,
W.
,
1991
,
Applied Nonlinear Control
,
Prentice Hall
,
Englewood Cliffs, NJ
.
36.
Astrom
,
K. J.
, and
Wittenmark
,
B.
,
1995
,
Adaptive Control
,
Addison Wesley
,
New York.
You do not currently have access to this content.